409 research outputs found

    Atomic scale Monte-Carlo simulations of neutron diffraction experiments on stoichiometric uranium dioxide up to 1664 K

    Get PDF
    The neutron transport in nuclear fuels depends on the crystalline structure of materials when neutron energies lie below a few eV. For that purpose, the theoretical formalism that describes the neutron elastic and inelastic scatterings by crystals has been implemented in the CINEL processing tool in order to provide temperature-dependent neutron cross sections usable by the Monte-Carlo code TRIPOLI4®. The performances of the Monte-Carlo calculations are illustrated with the analysis of neutron powder diffraction data on UO2 measured up to 1664 K with the D4 and D20 diffractometers of the Institute Laue–Langevin (Grenoble, France). The comparison of the experimental and simulated pair distribution functions confirms the unusual decrease of the U–O atomic distances with increasing temperature when an ideal fluorite structure (Fm3̄m space group) with harmonic atomic vibrations is assumed over the full temperature range. The flexibility of the CINEL code allowed to explore disorder or anharmonic oxygen vibrations in the Fm3̄m space group by using either a four-site model with a relaxation term or a structure factor equation with a non-zero anharmonic third-cumulant coefficient. As none of these models succeeded to improve the agreement with the experiments, recent works that propose other local crystalline symmetries for UO2 at elevated temperatures were investigated with the CINEL code. The case of the Pa3̄ symmetry is briefly discussed in this paper.Fil: Xu, S.. Commissariat à l'énergie atomique et aux énergies alternatives. Institut de REcherche sur les Systèmes Nucléaires pour la production d’Energie bas carbone; FranciaFil: Noguere, G.. Commissariat à l'énergie atomique et aux énergies alternatives. Institut de REcherche sur les Systèmes Nucléaires pour la production d’Energie bas carbone; FranciaFil: Desgranges, L.. Commissariat à l'énergie atomique et aux énergies alternatives. Institut de REcherche sur les Systèmes Nucléaires pour la production d’Energie bas carbone; FranciaFil: Marquez Damian, Jose Ignacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentin

    Uniqueness of bubble-free solution in linear rational expectations models

    No full text
    International audienceOne usually identifies bubble solutions to linear rational expectations models by extra components (irrelevant lags) arising in addition to market fundamentals. Although there are still many solutions relying on a minimal set of state variables, i.e., relating in equilibrium the current state of the economic system to as many lags as initial conditions, there is a conventional wisdom that the bubble-free (fundamentals) solution should be unique. This paper examines the existence of endogenous stochastic sunspot fluctuations close to solutions relying on a minimal set of state variables, which provides a natural test for identifying bubble and bubble-free solutions. It turns out that only one solution is locally immune to sunspots, independently of the stability properties of the perfect-foresight dynamics. In the standard saddle-point configuration for these dynamics, this solution corresponds to the so-called saddle stable path

    Quantum Criticality in doped CePd_1-xRh_x Ferromagnet

    Full text link
    CePd_1-xRh_x alloys exhibit a continuous evolution from ferromagnetism (T_C= 6.5 K) at x = 0 to a mixed valence (MV) state at x = 1. We have performed a detailed investigation on the suppression of the ferromagnetic (F) phase in this alloy using dc-(\chi_dc) and ac-susceptibility (\chi_ac), specific heat (C_m), resistivity (\rho) and thermal expansion (\beta) techniques. Our results show a continuous decrease of T_C (x) with negative curvature down to T_C = 3K at x*= 0.65, where a positive curvature takes over. Beyond x*, a cusp in cac is traced down to T_C* = 25 mK at x = 0.87, locating the critical concentration between x = 0.87 and 0.90. The quantum criticality of this region is recognized by the -log(T/T_0) dependence of C_m/T, which transforms into a T^-q (~0.5) one at x = 0.87. At high temperature, this system shows the onset of valence instability revealed by a deviation from Vegard's law (at x_V~0.75) and increasing hybridization effects on high temperature \chi_dc and \rho. Coincidentally, a Fermi liquid contribution to the specific heat arises from the MV component, which becomes dominant at the CeRh limit. In contrast to antiferromagnetic systems, no C_m/T flattening is observed for x > x_cr rather the mentioned power law divergence, which coincides with a change of sign of \beta. The coexistence of F and MV components and the sudden changes in the T dependencies are discussed in the context of randomly distributed magnetic and Kondo couplings.Comment: 11 pages, 11 figure

    Low temperature magnetic phase diagram of the cubic non-Fermi liquid system CeIn_(3-x)Sn_x

    Full text link
    In this paper we report a comprehensive study of the magnetic susceptibility (\chi), resistivity (\rho), and specific heat (C_P), down to 0.5 K of the cubic CeIn_(3-x)Sn_x alloy. The ground state of this system evolves from antiferromagnetic (AF) in CeIn_3(T_N=10.2 K) to intermediate-valent in CeSn_3, and represents the first example of a Ce-lattice cubic non-Fermi liquid (NFL) system where T_N(x) can be traced down to T=0 over more than a decade of temperature. Our results indicate that the disappearance of the AF state occurs near x_c ~ 0.7, although already at x ~ 0.4 significant modifications of the magnetic ground state are observed. Between these concentrations, clear NFL signatures are observed, such as \rho(T)\approx \rho_0 + A T^n (with n<1.5) and C_P(T)\propto -T ln(T) dependencies. Within the ordered phase a first order phase transition occurs for 0.25 < x < 0.5. With larger Sn doping, different weak \rho(T) dependencies are observed at low temperatures between x=1 and x=3 while C_P/T shows only a weak temperature dependence.Comment: 7 pages, 7 figures. Accepted in Eur. J. Phys.

    Crystal-field effects in the mixed-valence compounds Yb2M3Ga9 (M= Rh, Ir)

    Full text link
    Magnetic susceptibility, heat capacity, and electrical resistivity measurements have been carried out on single crystals of the intermediate valence compounds Yb2Rh3Ga9 and Yb2Ir3Ga9. These measurements reveal a large anisotropy due apparently to an interplay between crystalline electric field (CEF) and Kondo effects. The temperature dependence of magnetic susceptibility can be modelled using the Anderson impurity model including CEF within an approach based on the Non-Crossing Approximation.Comment: Accepted to Phys. Rev.

    Energy scales of Lu(1-x)Yb(x)Rh2Si2 by means of thermopower investigations

    Full text link
    We present the thermopower S(T) and the resistivity rho(T) of Lu(1-x)Yb(x)Rh2Si2 in the temperature range 3 K < T < 300 K. S(T) is found to change from two minima for dilute systems (x < 0.5) to a single large minimum in pure YbRh2Si2. A similar behavior has also been found for the magnetic contribution to the resistivity rho_mag(T). The appearance of the low-T extrema in S(T) and rho_mag(T) is attributed to the lowering of the Kondo scale with decreasing x. The evolution of the characteristic energy scales for both the Kondo effect and the crystal electric field splitting are deduced. An extrapolation allows to estimate the Kondo temperature of YbRh2Si2 to 29 K.Comment: 15 pages, 4 figures, accepted in Phys. Rev.

    Tungsten divertor sources in WEST related to impurity inventory and local plasma conditions

    Get PDF
    A dedicated series of L-mode deuterium discharges were performed in WEST in which a broad parameter space in terms of divertor plasma temperature (inner divertor at &lt;10 eV, outer divertor up to 50 eV) and impurity flux density was achieved by variation of X point elevation, upstream plasma density and fuelling position and rate. Density steps provided stable reference plasma conditions whilst density scans up to the point of detachment revealed the sputtering threshold behaviour of the dominant sputtering species. Tungsten gross erosion was quantified via the common WI 400.9 nm line and correlated with the residual gas content.</p

    Transport in Quantum Dots from the Integrability of the Anderson Model

    Full text link
    In this work we exploit the integrability of the two-lead Anderson model to compute transport properties of a quantum dot, in and out of equilibrium. Our method combines the properties of integrable scattering together with a Landauer-Buttiker formalism. Although we use integrability, the nature of the problem is such that our results are not generically exact, but must only be considered as excellent approximations which nonetheless are valid all the way through crossover regimes. The key to our approach is to identify the excitations that correspond to scattering states and then to compute their associated scattering amplitudes. We are able to do so both in and out of equilibrium. In equilibrium and at zero temperature, we reproduce the Friedel sum rule for an arbitrary magnetic field. At finite temperature, we study the linear response conductance at the symmetric point of the Anderson model, and reproduce Costi et al.'s numerical renormalization group computation of this quantity. We then explore the out-of-equilibrium conductance for a near-symmetric Anderson model, and arrive at quantitative expressions for the differential conductance, both in and out of a magnetic field. We find the expected splitting of the differential conductance peak into two in a finite magnetic field, HH. We determine the width, height, and position of these peaks. In particular we find for H >> T_k, the Kondo temperature, the differential conductance has maxima of e^2/h occuring for a bias V close to but smaller than H. The nature of our construction of scattering states suggests that our results for the differential magneto-conductance are not merely approximate but become exact in the large field limit.Comment: 88 pages, 16 figures, uses harvmac.te

    Thermodynamics of the dissipative two-state system: a Bethe Ansatz study

    Full text link
    The thermodynamics of the dissipative two-state system is calculated exactly for all temperatures and level asymmetries for the case of Ohmic dissipation. We exploit the equivalence of the two-state system to the anisotropic Kondo model and extract the thermodynamics of the former by solving the thermodynamic Bethe Ansatz equations of the latter. The universal scaling functions for the specific heat Cα(T)C_{\alpha}(T) and static dielectric susceptibility χα(T)\chi_{\alpha}(T) are extracted for all dissipation strengths 0<α<10<\alpha<1 for both symmetric and asymmetric two-state systems. The logarithmic corrections to these quantities at high temperatures are found in the Kondo limit α→1−\alpha\to 1^{-}, whereas for α<1\alpha< 1 we find the expected power law temperature dependences with the powers being functions of the dissipative coupling α\alpha. The low temperature behaviour is always that of a Fermi liquid.Comment: 24 pages, 32 PS figures. Typos corrected, final versio
    • …
    corecore