961 research outputs found
IRIS: A new generation of IRAS maps
The Infrared Astronomical Satellite (IRAS) had a tremendous impact on many
areas of modern astrophysics. In particular it revealed the ubiquity of
infrared cirrus that are a spectacular manifestation of the interstellar medium
complexity but also an important foreground for observational cosmology. With
the forthcoming Planck satellite there is a need for all-sky complementary data
sets with arcminute resolution that can bring informations on specific
foreground emissions that contaminate the Cosmic Microwave Background
radiation. With its 4 arcmin resolution matching perfectly the high-frequency
bands of Planck, IRAS is a natural data set to study the variations of dust
properties at all scales. But the latest version of the images delivered by the
IRAS team (the ISSA plates) suffer from calibration, zero level and striping
problems that can preclude its use, especially at 12 and 25 micron. In this
paper we present how we proceeded to solve each of these problems and enhance
significantly the general quality of the ISSA plates in the four bands (12, 25,
60 and 100 micron). This new generation of IRAS images, called IRIS, benefits
from a better zodiacal light subtraction, from a calibration and zero level
compatible with DIRBE, and from a better destriping. At 100 micron the IRIS
product is also a significant improvement from the Schlegel et al. (1998) maps.
IRIS keeps the full ISSA resolution, it includes well calibrated point sources
and the diffuse emission calibration at scales smaller than 1 degree was
corrected for the variation of the IRAS detector responsivity with scale and
brightness. The uncertainty on the IRIS calibration and zero level are
dominated by the uncertainty on the DIRBE calibration and on the accuracy of
the zodiacal light model.Comment: 16 pages, 17 figures, accepted for publication in ApJ (Suppl). Higher
resolution version available at
http://www.cita.utoronto.ca/~mamd/IRIS/IrisTechnical.htm
GHIGLS: HI mapping at intermediate Galactic latitude using the Green Bank Telescope
This paper introduces the data cubes from GHIGLS, deep Green Bank Telescope
surveys of the 21-cm line emission of HI in 37 targeted fields at intermediate
Galactic latitude. The GHIGLS fields together cover over 1000 square degrees at
9.55' spatial resolution. The HI spectra have an effective velocity resolution
about 1.0 km/s and cover at least -450 < v < +250 km/s. GHIGLS highlights that
even at intermediate Galactic latitude the interstellar medium is very complex.
Spatial structure of the HI is quantified through power spectra of maps of the
column density, NHI. For our featured representative field, centered on the
North Ecliptic Pole, the scaling exponents in power-law representations of the
power spectra of NHI maps for low, intermediate, and high velocity gas
components (LVC, IVC, and HVC) are -2.86 +/- 0.04, -2.69 +/- 0.04, and -2.59
+/- 0.07, respectively. After Gaussian decomposition of the line profiles, NHI
maps were also made corresponding to the narrow-line and broad-line components
in the LVC range; for the narrow-line map the exponent is -1.9 +/- 0.1,
reflecting more small scale structure in the cold neutral medium (CNM). There
is evidence that filamentary structure in the HI CNM is oriented parallel to
the Galactic magnetic field. The power spectrum analysis also offers insight
into the various contributions to uncertainty in the data. The effect of 21-cm
line opacity on the GHIGLS NHI maps is estimated.Comment: Accepted for publication in The Astrophysical Journal, 2015 July 16.
32 pages, 21 figures (Fig. 10 new). Minor revisions from review, particularly
Section 8 and Appendix C; results unchanged. Additional surveys added and
made available; new Appendix B. Added descriptions of available FITS files
and links to four illustrative movies on enhanced GHIGLS archive
(www.cita.utoronto.ca/GHIGLS/
Rotational Correlation Functions of Single Molecules
Single molecule rotational correlation functions are analyzed for several
reorientation geometries. Even for the simplest model of isotropic rotational
diffusion our findings predict non-exponential correlation functions to be
observed by polarization sensitive single molecule fluorescence microscopy.
This may have a deep impact on interpreting the results of molecular
reorientation measurements in heterogeneous environments.Comment: 5 pages, 4 figure
On the use of fractional Brownian motion simulations to determine the 3D statistical properties of interstellar gas
Based on fractional Brownian motion (fBm) simulations of 3D gas density and
velocity fields, we present a study of the statistical properties of
spectro-imagery observations (channel maps, integrated emission, and line
centroid velocity) in the case of an optically thin medium at various
temperatures. The power spectral index gamma_W of the integrated emission is
identified with that of the 3D density field (gamma_n) provided the medium's
depth is at least of the order of the largest transverse scale in the image,
and the power spectrum of the centroid velocity map is found to have the same
index gamma_C as that of the velocity field (gamma_v). Further tests with
non-fBm density and velocity fields show that this last result holds, and is
not modified either by the effects of density-velocity correlations. A
comparison is made with the theoretical predictions of Lazarian & Pogosyan
(2000).Comment: 28 pages, 14 figures, accepted for publication in ApJ. For preprint
with higher-resolution figures, see
http://www.cita.utoronto.ca/~mamd/miville_fbm2003.pd
Anisotropic Local Stress and Particle Hopping in a Deeply Supercooled Liquid
The origin of the microscopic motions that lead to stress relaxation in
deeply supercooled liquid remains unclear. We show that in such a liquid the
stress relaxation is locally anisotropic which can serve as the driving force
for the hopping of the system on its free energy surface. However, not all
hopping are equally effective in relaxing the local stress, suggesting that
diffusion can decouple from viscosity even at local level. On the other hand,
orientational relaxation is found to be always coupled to stress relaxation.Comment: 4 pages, 3 figure
Explanatory Supplement of the ISOGAL-DENIS Point Source Catalogue
We present version 1.0 of the ISOGAL-DENIS Point Source Catalogue (PSC),
containing more than 100,000 point sources detected at 7 and/or 15 micron in
the ISOGAL survey of the inner Galaxy with the ISOCAM instrument on board the
Infrared Space Observatory (ISO). These sources are cross-identified, wherever
possible, with near-infrared (0.8-2.2 micron) data from the DENIS survey. The
overall surface covered by the ISOGAL survey is about 16 square degrees, mostly
(95%) distributed near the Galactic plane (|b| < 1 deg), where the source
extraction can become confusion limited and perturbed by the high background
emission. Therefore, special care has been taken aimed at limiting the
photometric error to ~0.2 magnitude down to a sensitivity limit of typically 10
mJy. The present paper gives a complete description of the entries and the
information which can be found in this catalogue, as well as a detailed
discussion of the data processing and the quality checks which have been
completed. The catalogue is available via the VizieR Service at the Centre de
Donn\'ees Astronomiques de Strasbourg (CDS,
http://vizier.u-strasbg.fr/viz-bin/VizieR/) and also via the server at the
Institut d'Astrophysique de Paris (http://www-isogal.iap.fr/). A more complete
version of this paper, including a detailed description of the data processing,
is available in electronic form through the ADS service.Comment: 21 pages, 7 figures. A&A in press. Full length version with 32
figures and detailed description of the data processing is available here:
http://www-isogal.iap.fr/Publications/ExplSupplFull.ps.g
Galactic and Magellanic Evolution with the SKA
As we strive to understand how galaxies evolve it is crucial that we resolve
physical processes and test emerging theories in nearby systems that we can
observe in great detail. Our own Galaxy, the Milky Way, and the nearby
Magellanic Clouds provide unique windows into the evolution of galaxies, each
with its own metallicity and star formation rate. These laboratories allow us
to study with more detail than anywhere else in the Universe how galaxies
acquire fresh gas to fuel their continuing star formation, how they exchange
gas with the surrounding intergalactic medium, and turn warm, diffuse gas into
molecular clouds and ultimately stars. The 21-cm line of atomic
hydrogen (HI) is an excellent tracer of these physical processes. With the SKA
we will finally have the combination of surface brightness sensitivity, point
source sensitivity and angular resolution to transform our understanding of the
evolution of gas in the Milky Way, all the way from the halo down to the
formation of individual molecular clouds.Comment: 25 pages, from "Advancing Astrophysics with the Square Kilometre
Array", to appear in Proceedings of Scienc
The Shapes of Cooperatively Rearranging Regions in Glass Forming Liquids
The shapes of cooperatively rearranging regions in glassy liquids change from
being compact at low temperatures to fractal or ``stringy'' as the dynamical
crossover temperature from activated to collisional transport is approached
from below. We present a quantitative microscopic treatment of this change of
morphology within the framework of the random first order transition theory of
glasses. We predict a correlation of the ratio of the dynamical crossover
temperature to the laboratory glass transition temperature, and the heat
capacity discontinuity at the glass transition, Delta C_p. The predicted
correlation agrees with experimental results for the 21 materials compiled by
Novikov and Sokolov.Comment: 9 pages, 6 figure
Dynamic heterogeneities in the out-of-equilibrium dynamics of simple spherical spin models
The response of spherical two-spin interaction models, the spherical
ferromagnet (s-FM) and the spherical Sherrington-Kirkpatrick (s-SK) model, is
calculated for the protocol of the so-called nonresonant hole burning
experiment (NHB) for temperatures below the respective critical temperatures.
It is shown that it is possible to select dynamic features in the
out-of-equilibrium dynamics of both models, one of the hallmarks of dynamic
heterogeneities. The behavior of the s-SK model and the s-FM in three
dimensions is very similar, showing dynamic heterogeneities in the long time
behavior, i.e. in the aging regime. The appearence of dynamic heterogeneities
in the s-SK model explicitly demonstrates that these are not necessarily
related to {\it spatial} heterogeneities. For the s-FM it is shown that the
nature of the dynamic heterogeneities changes as a function of dimensionality.
With incresing dimension the frequency selectivity of the NHB diminishes and
the dynamics in the mean-field limit of the s-FM model becomes homogeneous.Comment: 16 pages, 8 figure
Structure and Colors of Diffuse Emission in the Spitzer Galactic First Look Survey
We investigate the density structure of the interstellar medium using new
high-resolution maps of the 8 micron, 24 micron, and 70 micron surface
brightness towards a molecular cloud in the Gum Nebula, made as part of the
Spitzer Space Telescope Galactic First Look Survey. The maps are correlated
with 100 micron images measured with IRAS. At 24 and 70 micron, the spatial
power spectrum of surface brightness follows a power law with spectral index
-3.5. At 24 micron, the power law behavior is remarkably consistent from the
0.2 degree size of our maps down to the 5 arcsecond spatial resolution. Thus,
the structure of the 24 micron emission is self-similar even at milliparsec
scales. The combined power spectrum produced from Spitzer 24 micron and IRAS 25
micron images is consistent with a change in the power law exponent from -2.6
to -3.5. The decrease may be due to the transition from a two-dimensional to
three-dimensional structure. Under this hypothesis, we estimate the thickness
of the emitting medium to be 0.3 pc.Comment: 13 Pages, 3 Figures, to be published in Astrophysical Journal
Supplement Series (Spitzer Special Issue), volume 154. Uses aastex v5.
- …
