4,133 research outputs found

    Cable Trouble

    Get PDF

    Chimpanzee coordination and potential communication in a two-touchscreen turn-taking game

    No full text
    Recent years have seen a growing interest in the question of whether and how groups of nonhuman primates coordinate their behaviors for mutual benefit. On the one hand, it has been shown that chimpanzees in the wild and in captivity can solve various coordination problems. On the other hand, evidence of communication in the context of coordination problems is scarce. Here, we investigated how pairs of chimpanzees (Pan troglodytes) solved a problem of dynamically coordinating their actions for achieving a joint goal. We presented five pairs of chimpanzees with a turn-taking coordination game, where the task was to send a virtual target from one computer display to another using two touch-screens. During the joint practice of the game some subjects exhibited spontaneous gesturing. To address the question whether these gestures were produced to sustain coordination, we introduced a joint test condition in which we simulated a coordination break-down scenario: subjects appeared either unwilling or unable to return the target to their partner. The frequency of gesturing was significantly higher in these test trials than in the regular trials. Our results suggest that at least in some contexts chimpanzees can exhibit communicative behaviors to sustain coordination in joint action

    Electrode material release during high voltage breakdown Final technical report

    Get PDF
    Electrode material release during high voltage breakdow

    A method to improve size estimates of walleye pollock (Theragra chalcogramma) Atka mackerel (Pleurogrammus monopterygius) consumed by pinnipeds: digestion correction factors applied to bones and otoliths recovered in scats

    Get PDF
    The lengths of otoliths and other skeletal structures recovered from the scats of pinnipeds, such as Steller sea lions (Eumetopias jubatus), correlate with body size and can be used to estimate the length of prey consumed. Unfortunately, otoliths are often found in too few scats or are too digested to usefully estimate prey size. Alternative diagnostic bones are frequently recovered, but few bone-size to prey-size correlations exist and bones are also reduced in size by various degrees owing to digestion. To prevent underestimates in prey sizes consumed techniques are required to account for the degree of digestion of alternative bones prior to estimating prey size. We developed a method (using defined criteria and photo-reference material) to assign the degree of digestion for key cranial structures of two prey species: walleye pollock (Theragra chalcogramma) and Atka mackerel (Pleurogrammus monopterygius). The method grades each structure into one of three condition categories; good, fair or poor. We also conducted feeding trials with captive Steller sea lions, feeding both fish species to determine the extent of erosion of each structure and to derive condition-specific digestion correction factors to reconstruct the original sizes of the structures consumed. In general, larger structures were relatively more digested than smaller ones. Mean size reduction varied between different types of structures (3.3−26.3%), but was not influenced by the size of the prey consumed. Results from the observations and experiments were combined to be able to reconstruct the size of prey consumed by sea lions and other pinnipeds. The proposed method has four steps: 1) measure the recovered structures and grade the extent of digestion by using defined criteria and photo-reference collection; 2) exclude structures graded in poor condition; 3) multiply measurements of structures in good and fair condition by their appropriate digestion correction factors to derive their original size; and 4) calculate the size of prey from allometric regressions relating corrected structure measurements to body lengths. This technique can be readily applied to piscivore dietary studies that use hard remains of fish

    Bonobos and chimpanzees remember familiar conspecifics for decades

    Get PDF
    Funding: We are grateful to the Royal Zoological Society of Scotland (RZSS) for core financial support to the RZSS Edinburgh Zoo’s Budongo Research Unit where this project was carried out.Recognition and memory of familiar conspecifics provides the foundation for complex sociality and is vital to navigating an unpredictable social world [Tibbetts and Dale, Trends Ecol. Evol. 22 , 529–537 (2007)]. Human social memory incorporates content about interactions and relationships and can last for decades [Sherry and Schacter, Psychol. Rev. 94 , 439–454 (1987)]. Long-term social memory likely played a key role throughout human evolution, as our ancestors increasingly built relationships that operated across distant space and time [Malone et al., Int. J. Primatol. 33 , 1251–1277 (2012)]. Although individual recognition is widespread among animals and sometimes lasts for years, little is known about social memory in nonhuman apes and the shared evolutionary foundations of human social memory. In a preferential-looking eye-tracking task, we presented chimpanzees and bonobos (N = 26) with side-by-side images of a previous groupmate and a conspecific stranger of the same sex. Apes’ attention was biased toward former groupmates, indicating long-term memory for past social partners. The strength of biases toward former groupmates was not impacted by the duration apart, and our results suggest that recognition may persist for at least 26 y beyond separation. We also found significant but weak evidence that, like humans, apes may remember the quality or content of these past relationships: apes’ looking biases were stronger for individuals with whom they had more positive histories of social interaction. Long-lasting social memory likely provided key foundations for the evolution of human culture and sociality as they extended across time, space, and group boundaries.Publisher PDFPeer reviewe
    • …
    corecore