1,621 research outputs found
Survival of Organic Materials in Hypervelocity Impacts of Ice on Sand, Ice, and Water in the Laboratory
The survival of organic molecules in shock impact events has been investigated in the laboratory. A frozen mixture of anthracene and stearic acid, solvated in dimethylsulfoxide (DMSO), was fired in a two-stage light gas gun at speeds of ?2 and ?4?km s?1 at targets that included water ice, water, and sand. This involved shock pressures in the range of 2–12 GPa. It was found that the projectile materials were present in elevated quantities in the targets after impact and in some cases in the crater ejecta as well. For DMSO impacting water at 1.9?km s?1 and 45° incidence, we quantify the surviving fraction after impact as 0.44±0.05. This demonstrates successful transfer of organic compounds from projectile to target in high-speed impacts. The range of impact speeds used covers that involved in impacts of terrestrial meteorites on the Moon, as well as impacts in the outer Solar System on icy bodies such as Pluto. The results provide laboratory evidence that suggests that exogenous delivery of complex organic molecules from icy impactors is a viable source of such material on target bodies
Recommended from our members
Laboratory capture, isolation and analysis of microparticles in aerogel: Preparation for the return of Stardust
We present observations from the laboratory capture of particles in aerogel. The paper focuses on a possible extraction technique and the bulk mineral characterization of the captured material using non-destructive analytical techniques
The shock compression of microorganism-loaded broths and emulsions: Experiments and simulations
By carefully selecting flyer plate thickness and the geometry of a target capsule for
bacterial broths and emulsions, we have successfully subjected the contents of the capsule to
simultaneous shock and dynamic compression when subjected to a flyer-plate impact
experiment. The capsules were designed to be recovered intact so that post experimental
analysis could be done on the contents. ANSYS® AUTODYN hydrocode simulations were
carried out to interrogate the deformation of the cover plate and the wave propagation in the
fluid. Accordingly, we have shown that microorganisms such as Escherichia coli,
Enterococcus faecalis and Zygosaccharomyces bailii are not affected by this type of loading
regime. However, by introducing a cavity behind the broth we were able to observe limited
kill in the yeast sample. Further, on using this latter technique with emulsions it was shown
that greater emulsification of an oil-based emulsion occurred due to the cavitation that was
introduced
Recommended from our members
Infrared, UV/VIS and Raman Spectroscopy of Comet Wild-2 Samples Returned by the Stardust Mission
Results from the preliminary examination of Stardust samples obtained using various spectroscopic methods will be presented
In Situ Measurement Activities at the NASA Orbital Debris Program Office
The NASA Orbital Debris Program Office has been involved in the development of several particle impact instruments since 2003. The main objective of this development is to eventually conduct in situ measurements to better characterize the small (millimeter or smaller) orbital debris and micrometeoroid populations in the near-Earth environment. In addition, the Office also supports similar instrument development to define the micrometeoroid and lunar secondary ejecta environment for future lunar exploration activities. The instruments include impact acoustic sensors, resistive grid sensors, fiber optic displacement sensors, and impact ionization sensors. They rely on different mechanisms and detection principles to identify particle impacts. A system consisting of these different sensors will provide data that are complimentary to each other, and will provide a better description of the physical and dynamical properties (e.g., size, mass, and impact speed) of the particles in the environment. Details of several systems being considered by the Office and their intended mission objectives are summarized in this paper
Immunisation with ‘naïve' syngeneic dendritic cells protects mice from tumour challenge
Dendritic cells (DCs) ‘pulsed' with an appropriate antigen may elicit an antitumour immune response in mouse models. However, while attempting to develop a DC immunotherapy protocol for the treatment of breast cancer based on the tumour-associated MUC1 glycoforms, we found that unpulsed DCs can affect tumour growth. Protection from RMA-MUC1 tumour challenge was achieved in C57Bl/6 MUC1 transgenic mice by immunising with syngeneic DCs pulsed with a MUC1 peptide. However, unpulsed DCs gave a similar level of protection, making it impossible to evaluate the effect of immunisation of mice with DCs pulsed with the specific peptide. Balb/C mice could also be protected from tumour challenge by immunisation with unpulsed DCs prior to challenge with murine mammary tumour cells (410.4) or these cells transfected with MUC1 (E3). Protection was achieved with as few as three injections of 50 000 naïve DCs per mouse per week, was not dependent on injection route, and was not specific to cell lines expressing human MUC1. However, the use of Rag2-knockout mice demonstrated that the adaptive immune response was required for tumour rejection. Injection of unpulsed DCs into mice bearing the E3 tumour slowed tumour growth. In vitro, production of IFN-γ and IL-4 was increased in splenic cells isolated from mice immunised with DCs. Depleting CD4 T cells in vitro partially decreased cytokine production by splenocytes, but CD8 depletion had no effect. This paper shows that naïve syngeneic DCs may induce an antitumour immune response and has implications for DC immunotherapy preclinical and clinical trials
Recommended from our members
SEM-EDS analyses of small craters in stardust aluminium foils: implications for the Wild-2 dust distribution
Implications for the Wild-2 dust distribution of the statistical results obtained by SEM-EDS from nearly 300 impact craters on aluminium foils of the Stardust sample tray assembly
Cometary Dust Characteristics: Comparison of Stardust Craters with Laboratory Impacts
Aluminium foils exposed to impact during the passage of the Stardust spacecraft through the coma of comet Wild 2 have preserved a record of a wide range of dust particle sizes. The encounter velocity and dust incidence direction are well constrained and can be simulated by laboratory shots. A crater size calibration programme based upon buckshot firings of tightly constrained sizes (monodispersive) of glass, polymer and metal beads has yielded a suite of scaling factors for interpretation of the original impacting grain dimensions. We have now extended our study to include recognition of particle density for better matching of crater to impactor diameter. A novel application of stereometric crater shape measurement, using paired scanning electron microscope (SEM) images has shown that impactors of differing density yield different crater depth/diameter ratios. Comparison of the three-dimensional gross morphology of our experimental craters with those from Stardust reveals that most of the larger Stardust impacts were produced by grains of low internal porosity
Recommended from our members
Is a depth camera in agreement with an electromagnetic tracking device when measuring head position?
Introduction: Clinicians typically observe and describe abnormal head postures (AHPs) and may also measure them. Depth cameras have been suggested as a reliable measurement device for measuring head position using face-tracking technology. This study compared a depth camera (Microsoft Kinect) to a gold standard electromagnetic tracking system (Polhemus device) to measure head position. Method: Twenty healthy volunteers (mean age 21 years) had their head position simultaneously recorded using the depth camera (Kinect) and the electromagnetic tracking system (Polhemus). Participants were asked to make 30-degree head movements into chin up, chin down, head turn and head tilt positions. The head movement made and the stability of the head at each position were recorded and analysed. Results: Compared to the electromagnetic tracking system (Polhemus), the depth camera (Kinect) always measured a smaller head movement. Measurements with the two devices were not statistically significantly different for turn right (P = 0.3955, p > 0.05), turn left (P = 0.4749, p > 0.05), tilt right (P = 0.7086, p > 0.05) and tilt left (P = 0.4091, p > 0.05) head movements. However, the smaller depth camera measurement of chin up and chin down head movements were statistically significant, chin up (P = 0.0001, p < 0.01) and chin down (P = 0.0005, p < 0.001). At each eccentric position, the depth camera (Kinect) recordings were more variable than the electromagnetic tracking system (Polhemus). Conclusions: Compared to the electromagnetic tracking system (Polhemus), the depth camera (Kinect) was comparable for measuring head turns and tilts but was less accurate at measuring chin up and chin down head positions. Further research is needed before the depth cameras are considered for clinical recordings of head position
- …