2,884 research outputs found
Discrete aqueous solvent effects and possible attractive forces
We study discrete solvent effects on the interaction of two parallel charged
surfaces in ionic aqueous solution. These effects are taken into account by
adding a bilinear non-local term to the free energy of Poisson-Boltzmann
theory. We study numerically the density profile of ions between the two
plates, and the resulting inter-plate pressure. At large plate separations the
two plates are decoupled and the ion distribution can be characterized by an
effective Poisson-Boltzmann charge that is smaller than the nominal charge. The
pressure is thus reduced relative to Poisson-Boltzmann predictions. At plate
separations below ~2 nm the pressure is modified considerably, due to the
solvent mediated short-range attraction between ions in the the system. For
high surface charges this contribution can overcome the mean-field repulsion
giving rise to a net attraction between the plates.Comment: 12 figures in 16 files. 19 pages. Submitted to J. Chem. Phys., July
200
Dispersion control for matter waves and gap solitons in optical superlattices
We present a numerical study of dispersion manipulation and formation of
matter-wave gap solitons in a Bose-Einstein condensate trapped in an optical
superlattice. We demonstrate a method for controlled generation of matter-wave
gap solitons in a stationary lattice by using an interference pattern of two
condensate wavepackets, which mimics the structure of the gap soliton near the
edge of a spectral band. The efficiency of this method is compared with that of
gap soliton generation in a moving lattice recently demonstrated experimentally
by Eiermann et al. [Phys. Rev. Lett. 92, 230401 (2004)]. We show that, by
changing the relative depths of the superlattice wells, one can fine-tune the
effective dispersion of the matter waves at the edges of the mini-gaps of the
superlattice Bloch-wave spectrum and therefore effectively control both the
peak density and the spatial width of the emerging gap solitons.Comment: 8 pages, 9 figures; modified references in Section 2; minor content
changes in Sections 1 and 2 and Fig. 9 captio
Tuning bad metal and non-Fermi liquid behavior in a Mott material: rare earth nickelate thin films
Resistances that exceed the Mott-Ioffe-Regel limit, known as bad metal
behavior, and non-Fermi liquid behavior are ubiquitous features of the normal
state of many strongly correlated materials. Here we establish the conditions
that lead to bad metal and non-Fermi liquid phases in NdNiO3, which exhibits a
prototype, bandwidth-controlled metal-insulator transition. We show that
resistance saturation is determined by the magnitude of the Ni eg orbital
splitting, which can be tuned by strain in epitaxial films, causing the
appearance of bad metal behavior under certain conditions. The results shed
light on the nature of a crossover to non-Fermi liquid metal phase and provide
a predictive criterion for strong localization. They elucidate a seemingly
complex phase behavior as a function of film strain and confinement and provide
guidelines for orbital engineering and novel devices.Comment: Manuscript text, 5 figures and supplemen
On the Properties of Two Pulses Propagating Simultaneously in Different Dispersion Regimes in a Nonlinear Planar Waveguide
Properties of two pulses propagating simultaneously in different dispersion
regimes, anomalous and normal, in a Kerr-type planar waveguide are studied in
the framework of the nonlinear Schroedinger equation. Catastrophic
self-focusing and spatio-temporal splitting of the pulses is investigated. For
the limiting case when the dispersive term of the pulse propagating in the
normal dispersion regime can be neglected an indication of a possibility of a
stable self-trapped propagation of both pulses is obtained.Comment: 18 pages (including 15 eps figures
Recommended from our members
Light-Induced Currents at Domain Walls in Multiferroic BiFeO3.
Multiferroic BiFeO3 (BFO) films with spontaneously formed periodic stripe domains can generate above-gap open circuit voltages under visible light illumination; nevertheless the underlying mechanism behind this intriguing optoelectronic response has not been understood to date. Here, we make contact-free measurements of light-induced currents in epitaxial BFO films via detecting terahertz radiation emanated by these currents, enabling a direct probe of the intrinsic charge separation mechanisms along with quantitative measurements of the current amplitudes and their directions. In the periodic stripe samples, we find that the net photocurrent is dominated by the charge separation across the domain walls, whereas in the monodomain samples the photovoltaic response arises from a bulk shift current associated with the non-centrosymmetry of the crystal. The peak current amplitude driven by the charge separation at the domain walls is found to be 2 orders of magnitude higher than the bulk shift current response, indicating the prominent role of domain walls acting as nanoscale junctions to efficiently separate photogenerated charges in the stripe domain BFO films. These findings show that domain-wall-engineered BFO thin films offer exciting prospects for ferroelectric-based optoelectronics, as well as bias-free strong terahertz emitters
Symbol calculus and zeta--function regularized determinants
In this work, we use semigroup integral to evaluate zeta-function regularized
determinants. This is especially powerful for non--positive operators such as
the Dirac operator. In order to understand fully the quantum effective action
one should know not only the potential term but also the leading kinetic term.
In this purpose we use the Weyl type of symbol calculus to evaluate the
determinant as a derivative expansion. The technique is applied both to a
spin--0 bosonic operator and to the Dirac operator coupled to a scalar field.Comment: Added references, some typos corrected, published versio
General and Specific Combining Ability in Forage Maize Aptitude Part 2: Land Races
Eight argentine land races of maize (1 to 8) were evaluated in a diallel mating scheme for ear, stover and total digestible dry matter yield. For the average of four environments, the crosses 1x2 and 1x4 do not show significant differences with the best check (Cargill Semiden 5) for total digestible dry matter yield. Using the Gardner and Eberhart diallel analysis only the sum of squares of cultivars for stover digestible dry matter yield was significant, suggesting that additive effects are very important in controlling this trait, while for ear digestible dry matter yield both additive and non-additive effects are important. This conclusion implies that if the parent populations are improved, the breeding strategies will need to be different depending on the plant characteristic to be selected
An Optimisation Framework for Airline Fleet Maintenance Scheduling with Tail Assignment Considerations
Fierce competition between airlines has led to the need of minimising the operating costs while also ensuring quality of service. Given the large proportion of operating costs dedicated to aircraft maintenance, cooperation between airlines and their respective maintenance provider is paramount. In this research, we propose a framework to develop commercially viable and maintenance feasible flight and maintenance schedules. Such framework involves two multi-objective mixed integer linear programming (MMILP) formulations and an iterative algorithm. The first formulation, the airline fleet maintenance scheduling (AMS) with violations, minimises the number of maintenance regulation violations and the number of not airworthy aircraft; subject to limited workshop resources and current maintenance regulations on individual aircraft flying hours. The second formulation, the AMS with tail assignment (TA) allows aircraft to be assigned to different flights. In this case, subject to similar constraints as the first formulation, six lexicographically ordered objective functions are minimised. Namely, the number of violations, maximum resource level, number of tail reassignments, number of maintenance interventions, overall resource usage, and the amount of maintenance required by each aircraft at the end of the planning horizon. The iterative algorithm ensures fast computational times while providing good quality solutions. Additionally, by tracking aircraft and using precise flying hours between maintenance opportunities, we ensure that the aircraft are airworthy at all times. Computational tests on real flight schedules over a 30-day planning horizon show that even with multiple airlines and workshops (16000 flights, 529 aircraft, 8 maintenance workshops) our solution approach can construct near-optimal maintenance schedules within minutes
Diffusiophoretic Behavior of Polyelectrolyte-Coated Particles
Diffusiophoresis, the movement of particles under a solute concentration gradient, has practical implications in a number of applications, such as particle sorting, focusing, and sensing. For diffusiophoresis in an electrolyte solution, the particle velocity is described by the electrolyte relative concentration gradient and the diffusiophoretic mobility of the particle. The electrolyte concentration, which typically varies throughout the system in space and time, can also influence the zeta potential of particles in space and time. This variation affects the diffusiophoretic behavior, especially when the zeta potential is highly dependent on the electrolyte concentration. In this work, we show that adsorbing a single bilayer (or 4 bilayers) of a polyelectrolyte pair (PDADMAC/PSS) on the surface of microparticles resulted in effectively constant zeta potential values with respect to salt concentration throughout the experimental range of salt concentrations. This allowed a constant potential model for diffusiophoretic transport to describe the experimental observations, which was not the case for uncoated particles in the same electrolyte system. This work highlights the use of simple polyelectrolyte pairs to tune the zeta potential and maintain constant values for precise control of diffusiophoretic transport
Examination of gutta-percha cones for microbial contamination during chemical use
OBJECTIVE: The aim of this study was to evaluate the degree of microbial contamination in packaged gutta-percha cones before and during use in clinical conditions. MATERIAL AND METHODS: Sealed packages of #15-40 gutta-percha cones were opened under aseptic laboratory conditions. Two gutta-percha cones from each size were randomly drawn and added to tubes containing glass beads and 750 µL of saline. The tubes were vortexed, serially diluted and samples of 250 µL were cultured on agar plates. The plates were incubated at 37ºC for 3 days and colonies were counted. The initially sampled packages were distributed to 12 final year dental students. The packages were collected at the end of the first and the third clinical practice days and sampled as described above. RESULTS: Baseline microbial counts did not exceed 3 CFU. At the end of the first and the third day, additional contamination was found in five and three of the packages, respectively. The ratio of contaminated packages at the first day and the third day was not significantly different (z-test; p >; 0.05). The numbers of microorganisms cultured at the first day (8 ± 9.9 CFU) and the third day (4.5 ± 8.3 CFU) were not significantly different (Wilcoxon signed-rank test; p >; 0.05). No significant correlation was found between the number of filled root canals and cultured microorganisms at either the first day (Spearman's rho; r = 0.481, p = 0.113) or the third day (r = -0.034, p = 0.917). CONCLUSIONS: Gutta-percha cones taken directly from manufacturer's sealed package harbored microorganisms. Clinical use of the packages has been found to be associated with additional contamination of the gutta-percha cones. The counts of cultured microorganisms did not correlate well with the number of filled root canals
- …