19 research outputs found

    Cerebellar Asymmetry and Cortical Connectivity in Monozygotic Twins with Discordant Handedness

    Get PDF
    Handedness differentiates patterns of neural asymmetry and interhemispheric connectivity in cortical systems that underpin manual and language functions. Contemporary models of cerebellar function incorporate complex motor behaviour and higher-order cognition, expanding upon earlier, traditional associations between the cerebellum and motor control. Structural MRI defined cerebellar volume asymmetries and correlations with corpus callosum (CC) size were compared in 19 pairs of adult female monozygotic twins strongly discordant for handedness (MZHd). Volume and asymmetry of cerebellar lobules were obtained using automated parcellation.CC area and regional widths were obtained from midsagittal planimetric measurements. Within the cerebellum and CC, neurofunctional distinctions were drawn between motor and higher-order cognitive systems. Relationships amongst regional cerebellar asymmetry and cortical connectivity (as indicated by CC widths) were investigated. Interactions between hemisphere and handedness in the anterior cerebellum were due to a larger right-greater-than-left hemispheric asymmetry in right-handed (RH) compared to left-handed (LH) twins. In LH twins only, anterior cerebellar lobule volumes (IV, V) for motor control were associated with CC size, particularly in callosal regions associated with motor cortex connectivity. Superior posterior cerebellar lobule volumes (VI, Crus I, Crus II, VIIb) showed no correlation with CC size in either handedness group. These novel results reflected distinct patterns of cerebellar-cortical relationships delineated by specific CC regions and an anterior-posterior cerebellar topographical mapping. Hence, anterior cerebellar asymmetry may contribute to the greater degree of bilateral cortical organisation of frontal motor function in LH individuals

    Comparing the effects of an acute bout of physical exercise with an acute bout of interactive mental and physical exercise on electrophysiology and executive functioning in younger and older adults

    No full text
    Background Physical exercise has been shown to improve cognitive and neural functioning in older adults. Aims and methods The current study compared the effects of an acute bout of physical exercise with a bout of interactive mental and physical exercise (i.e., “exergaming”) on executive (Stroop) task performance and event-related potential (ERP) amplitudes in younger and older adults. Results Results revealed enhanced executive task performance in younger and older adults after exercise, with no differences in performance between exercise conditions. Stroop (RT) performance in older adults improved more than in younger adults from pre- to post-exercise. A significant increase in EEG amplitude from pre- to post-exercise was found at the Cz site from 320 to 700 ms post-stimulus for both younger and older adults, with older adults demonstrating a larger Stroop interference effect. While younger adults exhibited overall greater EEG amplitudes than older adults, they showed no differences between congruent and incongruent trials (i.e., minimal interference). Compared to peers with higher BMI (body mass index), older adults with lower BMI showed a greater reduction in Stroop interference effects from pre- to post-exercise. Discussion and conclusions The beneficial effects of an acute bout of physical exercise on cognitive and neural functioning in younger and older adults were confirmed, with no difference between standard exercise and exergaming. Findings suggest that BMI, sometimes used as a proxy for fitness level, may modulate benefits that older adults derive from an acute bout of exercise. Findings have implications for future research that seeks to investigate unique effects of exergaming when compared to standard physical exercise
    corecore