57 research outputs found

    Study of pretesting effects on electroexplosive devices

    Get PDF
    Pretesting techniques of suppliers and users and effects on electroexplosive device

    Study of design parameters of explosive initiators with respect to space environments Final report

    Get PDF
    Environmental hazards to explosives and explosive triggering devices encountered on manned space flight

    An epistatic mini-circuitry between the transcription factors Snail and HNF4a controls liver stem cell and hepatocyte features exhorting opposite regulation on stemness-inhibiting microRNAs

    Get PDF
    Preservation of the epithelial state involves the stable repression of EMT program while maintenance of the stem compartment requires the inhibition of differentiation processes. A simple and direct molecular mini-circuitry between master elements of these biological processes, may provide the best device to keep balanced such complex phenomena. In this work, we show that in hepatic stem cell Snail, a transcriptional repressor of the hepatocyte differentiation master gene HNF4, directly represses the expression of the epithelial microRNAs-200c and -34a, which in turn target several stem cell genes. Notably, in differentiated hepatocytes HNF4, previously identified as a transcriptional repressor of Snail, induces the microRNAs-34a and -200a, b, c that, when silenced, causes epithelial dedifferentiation and reacquisition of stem traits. Altogether these data unveiled Snail, HNF4 and microRNAs -200a, b, c and -34a as epistatic elements controlling hepatic stem cell maintenance/differentiation

    Hepatitis C virus production requires apolipoprotein A-I and affects its association with nascent low-density lipoproteins

    Get PDF
    Background/aims The life cycle of hepatitis C virus (HCV) is intimately linked to the lipid metabolism of the host. In particular, HCV exploits the metabolic machinery of the lipoproteins in several steps of its life cycle such as circulation in the bloodstream, cell attachment and entry, assembly and release of viral particles. However, the details of how HCV interacts with and influences the metabolism of the host lipoproteins are not well understood. A study was undertaken to investigate whether HCV directly affects the protein composition of host circulating lipoproteins. Methods A proteomic analysis of circulating very low-, low- and high-density lipoproteins (VLDL, LDL and HDL), isolated from either in-treatment naive HCV-infected patients or healthy donors (HD), was performed using two-dimensional gel electrophoresis and tandem mass spectrometry (MALDI-TOF/TOF). The results obtained were further investigated using in vitro models of HCV infection and replication. Results A decreased level of apolipoprotein A-I (apoA-I) was found in the LDL fractions of HCV-infected patients. This result was confirmed by western blot and ELISA analysis. HCV cellular models (JFH1 HCV cell culture system (HCVcc) and HCV subgenomic replicons) showed that the decreased apoA-I/LDL association originates from hepatic biogenesis rather than lipoprotein catabolism occurring in the circulation, and is not due to a downregulation of the apoA-I protein concentration. The sole non-structural viral proteins were sufficient to impair the apoA-I/LDL association. Functional evidence was obtained for involvement of apoA-I in the viral life cycle such as RNA replication and virion production. The specific siRNA-mediated downregulation of apoA-I led to a reduction in both HCV RNA and viral particle levels in culture. Conclusions This study shows that HCV induces lipoprotein structural modification and that its replication and production are linked to the host lipoprotein metabolism, suggesting apoA-I as a new possible target for antiviral therapy

    Spike-in SILAC proteomic approach reveals the vitronectin as an early molecular signature of liver fibrosis in hepatitis C infections with hepatic iron overload

    Get PDF
    Hepatitis C virus (HCV)-induced iron overload has been shown to promote liver fibrosis, steatosis, and hepatocellular carcinoma. The zonal-restricted histological distribution of pathological iron deposits has hampered the attempt to perform large-scale in vivo molecular investigations on the comorbidity between iron and HCV. Diagnostic and prognostic markers are not yet available to assess iron overload-induced liver fibrogenesis and progression in HCV infections. Here, by means of Spike-in SILAC proteomic approach, we first unveiled a specific membrane protein expression signature of HCV cell cultures in the presence of iron overload. Computational analysis of proteomic dataset highlighted the hepatocytic vitronectin expression as the most promising specific biomarker for iron-associated fibrogenesis in HCV infections. Next, the robustness of our in vitro findings was challenged in human liver biopsies by immunohistochemistry and yielded two major results: (i) hepatocytic vitronectin expression is associated to liver fibrogenesis in HCV-infected patients with iron overload; (ii) hepatic vitronectin expression was found to discriminate also the transition between mild to moderate fibrosis in HCV-infected patients without iron overload. \uc2\ua9 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

    Spike-in SILAC proteomic approach reveals the vitronectin as an early molecular signature of liver fibrosis in hepatitis C infections with hepatic iron overload

    Get PDF
    Hepatitis C virus (HCV)-induced iron overload has been shown to promote liver fibrosis, steatosis, and hepatocellular carcinoma. The zonal-restricted histological distribution of pathological iron deposits has hampered the attempt to perform large-scale in vivo molecular investigations on the comorbidity between iron and HCV. Diagnostic and prognostic markers are not yet available to assess iron overload-induced liver fibrogenesis and progression in HCV infections. Here, by means of Spike-in SILAC proteomic approach, we first unveiled a specific membrane protein expression signature of HCV cell cultures in the presence of iron overload. Computational analysis of proteomic dataset highlighted the hepatocytic vitronectin expression as the most promising specific biomarker for iron-associated fibrogenesis in HCV infections. Next, the robustness of our in vitro findings was challenged in human liver biopsies by immunohistochemistry and yielded two major results: (i) hepatocytic vitronectin expression is associated to liver fibrogenesis in HCV-infected patients with iron overload; (ii) hepatic vitronectin expression was found to discriminate also the transition between mild to moderate fibrosis in HCV-infected patients without iron overload. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

    The Snail repressor recruits EZH2 to specific genomic sites through the enrollment of the lncRNA HOTAIR in epithelial-to-mesenchymal transition

    Get PDF
    The transcription factor Snail is a master regulator of cellular identity and epithelial-to-mesenchymal transition (EMT) directly repressing a broad repertoire of epithelial genes. How chromatin modifiers instrumental to its activity are recruited to Snail-specific binding sites is unclear. Here we report that the long non-coding RNA (lncRNA) HOTAIR (for HOX Transcript Antisense Intergenic RNA) mediates a physical interaction between Snail and enhancer of zeste homolog 2 (EZH2), an enzymatic subunit of the polycomb-repressive complex 2 and the main writer of chromatin-repressive marks. The Snail-repressive activity, here monitored on genes with a pivotal function in epithelial and hepatic morphogenesis, differentiation and cell-type identity, depends on the formation of a tripartite Snail/HOTAIR/EZH2 complex. These results demonstrate an lncRNA-mediated mechanism by which a transcriptional factor conveys a general chromatin modifier to specific genes, thereby allowing the execution of hepatocyte transdifferentiation; moreover, they highlight HOTAIR as a crucial player in the Snail-mediated EMT.Oncogene advance online publication, 25 July 2016; doi:10.1038/onc.2016.260

    An interdisciplinary approach to the study of kiln firing: a case study from the Campus Galli open-air museum (southern Germany)

    Get PDF
    Pottery kilns are a common feature in the archaeological record of different periods. However, these pyrotechnological installations are still seldom the target of interdisciplinary investigations. To fill this gap in our knowledge, an updraft kiln firing experiment was run at the Campus Galli open-air museum (southern Germany) by a team consisting of experimental archaeologists, material scientists, geoarchaeologists, and palaeobotanists. The entire process from the preparation of the raw materials to the firing and opening of the kiln was carefully recorded with a particular focus on the study of the raw materials used for pottery making, as well as on fuel usage. The temperatures were monitored by thermocouples placed at different positions in the combustion and firing chambers. In addition, thermocouples were installed within the kiln wall to measure the temperature distribution inside the structure itself. Unfired raw materials as well as controlled and experimentally thermally altered ceramic samples were then characterised with an integrated analysis including ceramic petrography, X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and portable X-ray fluorescence (pXRF). Our work provides data about mineralogical and microstructural developments in both pottery kiln structures and the ceramics produced in this type of installations. This is helpful to discuss the limits and potential of various scientific analyses commonly used in ancient ceramic pyrotechnological studies. Overall, our work contributes to a better understanding of updraft kiln technology and offers guidelines on how to address the study of this type of pyrotechnological installations using interdisciplinary research strategies

    Infarct size, inflammatory burden, and admission hyperglycemia in diabetic patients with acute myocardial infarction treated with SGLT2-inhibitors: a multicenter international registry

    Get PDF
    BACKGROUND: The inflammatory response occurring in acute myocardial infarction (AMI) has been proposed as a potential pharmacological target. Sodium-glucose co-transporter 2 inhibitors (SGLT2-I) currently receive intense clinical interest in patients with and without diabetes mellitus (DM) for their pleiotropic beneficial effects. We tested the hypothesis that SGLT2-I have anti-inflammatory effects along with glucose-lowering properties. Therefore, we investigated the link between stress hyperglycemia, inflammatory burden, and infarct size in a cohort of type 2 diabetic patients presenting with AMI treated with SGLT2-I versus other oral anti-diabetic (OAD) agents. METHODS: In this multicenter international observational registry, consecutive diabetic AMI patients undergoing percutaneous coronary intervention (PCI) between 2018 and 2021 were enrolled. Based on the presence of anti-diabetic therapy at the admission, patients were divided into those receiving SGLT2-I (SGLT-I users) versus other OAD agents (non-SGLT2-I users). The following inflammatory markers were evaluated at different time points: white-blood-cell count, neutrophil-to-lymphocyte ratio (NLR), platelet-to-lymphocyte ratio (PLR), neutrophil-to-platelet ratio (NPR), and C-reactive protein. Infarct size was assessed by echocardiography and by peak troponin levels. RESULTS: The study population consisted of 583 AMI patients (with or without ST-segment elevation): 98 SGLT2-I users and 485 non-SGLT-I users. Hyperglycemia at admission was less prevalent in the SGLT2-I group. Smaller infarct size was observed in patients treated with SGLT2-I compared to non-SGLT2-I group. On admission and at 24 h, inflammatory indices were significantly higher in non-SGLT2-I users compared to SGLT2-I patients, with a significant increase in neutrophil levels at 24 h. At multivariable analysis, the use of SGLT2-I was a significant predictor of reduced inflammatory response (OR 0.457, 95% CI 0.275-0.758, p = 0.002), independently of age, admission creatinine values, and admission glycemia. Conversely, peak troponin values and NSTEMI occurrence were independent predictors of a higher inflammatory status. CONCLUSIONS: Type 2 diabetic AMI patients receiving SGLT2-I exhibited significantly reduced inflammatory response and smaller infarct size compared to those receiving other OAD agents, independently of glucose-metabolic control. Our findings are hypothesis generating and provide new insights on the cardioprotective effects of SGLT2-I in the setting of coronary artery disease. TRIAL REGISTRATION: Data are part of the ongoing observational registry: SGLT2-I AMI PROTECT. CLINICALTRIALS: gov Identifier: NCT05261867

    An interdisciplinary approach to the study of kiln firing: a case study from the Campus Galli open-air museum (southern Germany)

    Get PDF
    Pottery kilns are a common feature in the archaeological record of different periods. However, these pyrotechnological installations are still seldom the target of interdisciplinary investigations. To fill this gap in our knowledge, an updraft kiln firing experiment was run at the Campus Galli open-air museum (southern Germany) by a team consisting of experimental archaeologists, material scientists, geoarchaeologists, and palaeobotanists. The entire process from the preparation of the raw materials to the firing and opening of the kiln was carefully recorded with a particular focus on the study of the raw materials used for pottery making, as well as on fuel usage. The temperatures were monitored by thermocouples placed at different positions in the combustion and firing chambers. In addition, thermocouples were installed within the kiln wall to measure the temperature distribution inside the structure itself. Unfired raw materials as well as controlled and experimentally thermally altered ceramic samples were then characterised with an integrated analysis including ceramic petrography, X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and portable X-ray fluorescence (pXRF). Our work provides data about mineralogical and microstructural developments in both pottery kiln structures and the ceramics produced in this type of installations. This is helpful to discuss the limits and potential of various scientific analyses commonly used in ancient ceramic pyrotechnological studies. Overall, our work contributes to a better understanding of updraft kiln technology and offers guidelines on how to address the study of this type of pyrotechnological installations using interdisciplinary research strategies
    • …
    corecore