22,171 research outputs found
The activation of hydrogen by excited mercury atoms
That mercury atoms excited by absorption of the line 2537Ă
are able to activate various kinds of atoms by collisions of the second kind has been shown in several different ways. Using pressure measurements to follow the reaction, Cario and Franck (1) showed that hydrogen, in the presence of excited mercury vapor, can be activated and made to reduce copper oxide or tungsten oxide, while Dickinson (2) repeated the experiment using gaseous oxygen instead of solid oxide. Employing spectroscopic methods of detection, Cario (3) activated thallium vapor by collisions with excited mercury atoms and observed the radiation of the green thallium line 5351 Ă
and indeed all the thallium lines which would theoretically be expected
The analysis of nonstationary vibration data
The general methodology for the analysis of arbitrary nonstationary random data is reviewed. A specific parametric model, called the product model, that has applications to space vehicle launch vibration data analysis is discussed. Illustrations are given using the nonstationary launch vibration data measured on the Space Shuttle orbiter vehicle
Optimum data analysis procedures for Titan 4 and Space Shuttle payload acoustic measurements during lift-off
Analytical expressions have been derived to describe the mean square error in the estimation of the maximum rms value computed from a step-wise (or running) time average of a nonstationary random signal. These analytical expressions have been applied to the problem of selecting the optimum averaging times that will minimize the total mean square errors in estimates of the maximum sound pressure levels measured inside the Titan IV payload fairing (PLF) and the Space Shuttle payload bay (PLB) during lift-off. Based on evaluations of typical Titan IV and Space Shuttle launch data, it has been determined that the optimum averaging times for computing the maximum levels are (1) T (sub o) = 1.14 sec for the maximum overall level, and T(sub oi) = 4.88 f (sub i) (exp -0.2) sec for the maximum 1/3 octave band levels inside the Titan IV PLF, and (2) T (sub o) = 1.65 sec for the maximum overall level, and T (sub oi) = 7.10 f (sub i) (exp -0.2) sec for the maximum 1/3 octave band levels inside the Space Shuttle PLB, where f (sub i) is the 1/3 octave band center frequency. However, the results for both vehicles indicate that the total rms error in the maximum level estimates will be within 25 percent the minimum error for all averaging times within plus or minus 50 percent of the optimum averaging time, so a precise selection of the exact optimum averaging time is not critical. Based on these results, linear averaging times (T) are recommended for computing the maximum sound pressure level during lift-off
Dissipative "Groups" and the Bloch Ball
We show that a quantum control procedure on a two-level system including
dissipation gives rise to a semi-group corresponding to the Lie algebra
semi-direct sum gl(3,R)+R^3. The physical evolution may be modelled by the
action of this semi-group on a 3-vector as it moves inside the Bloch sphere, in
the Bloch ball.Comment: 4 pages. Proceedings of Group 24, Paris, July, 200
Dissipative Quantum Control
Nature, in the form of dissipation, inevitably intervenes in our efforts to
control a quantum system. In this talk we show that although we cannot, in
general, compensate for dissipation by coherent control of the system, such
effects are not always counterproductive; for example, the transformation from
a thermal (mixed) state to a cold condensed (pure state) can only be achieved
by non-unitary effects such as population and phase relaxation.Comment: Contribution to Proceedings of \emph{ICCSUR 8} held in Puebla,
Mexico, July 2003, based on talk presented by Allan Solomon (ca 8 pages,
latex, 1 latex figure, 2 pdf figures converted to eps, appear to cause some
trouble
Modelling and simulation framework for reactive transport of organic contaminants in bed-sediments using a pure java object - oriented paradigm
Numerical modelling and simulation of organic contaminant reactive transport in the environment is being increasingly
relied upon for a wide range of tasks associated with risk-based decision-making, such as prediction of contaminant
profiles, optimisation of remediation methods, and monitoring of changes resulting from an implemented remediation
scheme. The lack of integration of multiple mechanistic models to a single modelling framework, however, has
prevented the field of reactive transport modelling in bed-sediments from developing a cohesive understanding of
contaminant fate and behaviour in the aquatic sediment environment. This paper will investigate the problems involved
in the model integration process, discuss modelling and software development approaches, and present preliminary
results from use of CORETRANS, a predictive modelling framework that simulates 1-dimensional organic contaminant
reaction and transport in bed-sediments
A distinctive energy policy for Scotland?
This paper explores the emergence of a distinctive energy policy for Scotland and raises the issue of the desirability of any differentiation from UK energy policy. This requires an examination of both UK and Scottish energy policies, although we adopt a rather broad-brush overview rather than a very detailed analysis
Nanoelectronics
In this chapter we intend to discuss the major trends in the evolution of
microelectronics and its eventual transition to nanoelectronics. As it is well
known, there is a continuous exponential tendency of microelectronics towards
miniaturization summarized in G. Moore's empirical law. There is consensus that
the corresponding decrease in size must end in 10 to 15 years due to physical
as well as economical limits. It is thus necessary to prepare new solutions if
one wants to pursue this trend further. One approach is to start from the
ultimate limit, i.e. the atomic level, and design new materials and components
which will replace the present day MOS (metal-oxide-semi- conductor) based
technology. This is exactly the essence of nanotechnology, i.e. the ability to
work at the molecular level, atom by atom or molecule by molecule, to create
larger structures with fundamentally new molecular orga- nization. This should
lead to novel materials with improved physical, chemi- cal and biological
properties. These properties can be exploited in new devices. Such a goal would
have been thought out of reach 15 years ago but the advent of new tools and new
fabrication methods have boosted the field. We want to give here an overview of
two different subfields of nano- electronics. The first part is centered on
inorganic materials and describes two aspects: i) the physical and economical
limits of the tendency to miniaturiza- tion; ii) some attempts which have
already been made to realize devices with nanometric size. The second part
deals with molecular electronics, where the basic quantities are now molecules,
which might offer new and quite interest- ing possibilities for the future of
nanoelectronicsComment: HAL : hal-00710039, version 2. This version corrects some aspect
concerning the metal-insulator-metal without dot
- âŠ