247 research outputs found
A Sulfhydryl-Reactive Ruthenium (II) Complex and Its Conjugation to Protein G as a Universal Reagent for Fluorescent Immunoassays
To develop a fluorescent ruthenium complex for biosensing, we synthesized a novel sulfhydryl-reactive compound, 4-bromophenanthroline bis-2,2′-dipyridine Ruthenium bis (hexafluorophosphate). The synthesized Ru(II) complex was crosslinked with thiol-modified protein G to form a universal reagent for fluorescent immunoassays. The resulting Ru(II)-protein G conjugates were identified by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). The emission peak wavelength of the Ru(II)-protein G conjugate was 602 nm at the excitation of 452 nm which is similar to the spectra of the Ru(II) complex, indicating that Ru(II)-protein G conjugates still remain the same fluorescence after conjugation. To test the usefulness of the conjugate for biosensing, immunoglobulin G (IgG) binding assay was conducted. The result showed that Ru(II)-protein G conjugates were capable of binding IgG and the more cross-linkers to modify protein G, the higher conjugation efficiency. To demonstrate the feasibility of Ru(II)-protein G conjugates for fluorescent immunoassays, the detection of recombinant histidine-tagged protein using the conjugates and anti-histidine antibody was developed. The results showed that the histidine-tagged protein was successfully detected with dose-response, indicating that Ru(II)-protein G conjugate is a useful universal fluorescent reagent for quantitative immunoassays
Fast-growing pancreatic neuroendocrine carcinoma in a patient with multiple endocrine neoplasia type 1: a case report
<p>Abstract</p> <p>Introduction</p> <p>Predictive genetic screening and regular screening programs in patients with multiple endocrine neoplasia type 1 are intended to detect and treat malignant tumors at the earliest stage possible. Malignant neuroendocrine pancreatic tumors are the most frequent cause of death in these patients. However, the extent and intervals of screening in patients with multiple endocrine neoplasia type 1 are controversial as neuroendocrine tumors are usually slow growing. Here we report the case of a patient who developed a fast-growing neuroendocrine carcinoma within 15 months of a laparoscopic distal pancreatic resection.</p> <p>Case presentation</p> <p>We followed a group of 45 patients with multiple endocrine neoplasia type 1 by an annual screening program in the Department of Visceral, Thoracic, and Vascular Surgery at the University Hospital Marburg in cooperation with the Department of Radiology and the Division of Endocrinology. A man with multiple endocrine neoplasia type 1 who was diagnosed with a recurrent primary hyperparathyroidism underwent a distal pancreatic resection for a non-functional neuroendocrine tumor. In the context of our regular screening program, a large non-functional neuroendocrine tumor was diagnosed in the pancreatic head 15 months after the first pancreatic surgery. Therefore, we performed an enucleation and regional lymph node resection. At histology, the diagnosis of a neuroendocrine carcinoma with one lymph node metastasis was established. There was no evidence of recurrence 9 months after re-operation.</p> <p>Conclusion</p> <p>Fast-growing neuroendocrine tumors are rare in patients with multiple endocrine neoplasia type 1. The intervals, both postoperative and in newly diagnosed pancreatic lesions, in patients with multiple endocrine neoplasia type 1 should be reduced to 6 months to establish the early diagnosis of rapidly progressive disease in a small subset of patients.</p
The effect of hypoxia and work intensity on insulin resistance in type 2 diabetes
Context:Hypoxia and muscle contraction stimulate glucose transport in vitro. We have previously demonstrated that exercise and hypoxia have an additive effect on insulin sensitivity in type 2 diabetics.Objectives:Our objective was to examine the effects of three different hypoxic/exercise (Hy Ex) trials on glucose metabolism and insulin resistance in the 48 h after acute hypoxia in type 2 diabetics.Design, Participants, and Interventions:Eight male type 2 diabetics completed 60 min of hypoxic [mean (sem) O(2) = ∼14.7 (0.2)%] exercise at 90% of lactate threshold [Hy Ex(60); 49 (1) W]. Patients completed an additional two hypoxic trials of equal work, lasting 40 min [Hy Ex(40); 70 (1) W] and 20 min [Hy Ex(20); 140 (12) W].Main Outcome Measures:Glucose rate of appearance and rate of disappearance were determined using the one-compartment minimal model. Homeostasis models of insulin resistance (HOMA(IR)), fasting insulin resistance index and β-cell function (HOMA(β-cell)) were calculated at 24 and 48 h after trials.Results:Peak glucose rate of appearance was highest during Hy Ex(20) [8.89 (0.56) mg/kg · min, P < 0.05]. HOMA(IR) and fasting insulin resistance index were improved in the 24 and 48 h after Hy Ex(60) and Hy Ex(40) (P < 0.05). HOMA(IR) decreased 24 h after Hy Ex(20) (P < 0.05) and returned to baseline values at 48 h.Conclusions:Moderate-intensity exercise in hypoxia (Hy Ex(60) and Hy Ex(40)) stimulates acute- and moderate-term improvements in insulin sensitivity that were less apparent in Hy Ex(20). Results suggest that exercise duration and not total work completed has a greater influence on acute and moderate-term glucose control in type 2 diabetics
Relation between dietary cadmium intake and biomarkers of cadmium exposure in premenopausal women accounting for body iron stores
<p>Abstract</p> <p>Background</p> <p>Cadmium is a widespread environmental pollutant with adverse effects on kidneys and bone, but with insufficiently elucidated public health consequences such as risk of end-stage renal diseases, fractures and cancer. Urinary cadmium is considered a valid biomarker of lifetime kidney accumulation from overall cadmium exposure and thus used in the assessment of cadmium-induced health effects. We aimed to assess the relationship between dietary cadmium intake assessed by analyses of duplicate food portions and cadmium concentrations in urine and blood, taking the toxicokinetics of cadmium into consideration.</p> <p>Methods</p> <p>In a sample of 57 non-smoking Swedish women aged 20-50 years, we assessed Pearson's correlation coefficients between: 1) Dietary intake of cadmium assessed by analyses of cadmium in duplicate food portions collected during four consecutive days and cadmium concentrations in urine, 2) Partial correlations between the duplicate food portions and urinary and blood cadmium concentrations, respectively, and 3) Model-predicted urinary cadmium concentration predicted from the dietary intake using a one-compartment toxicokinetic model (with individual data on age, weight and gastrointestinal cadmium absorption) and urinary cadmium concentration.</p> <p>Results</p> <p>The mean concentration of cadmium in urine was 0.18 (+/- s.d.0.12) μg/g creatinine and the model-predicted urinary cadmium concentration was 0.19 (+/- s.d.0.15) μg/g creatinine. The partial Pearson correlations between analyzed dietary cadmium intake and urinary cadmium or blood concentrations were r = 0.43 and 0.42, respectively. The correlation between diet and urinary cadmium increased to r = 0.54 when using a one-compartment model with individual gastrointestinal cadmium absorption coefficients based on the women's iron status.</p> <p>Conclusions</p> <p>Our results indicate that measured dietary cadmium intake can reasonably well predict biomarkers of both long-term kidney accumulation (urine) and short-term exposure (blood). The predictions are improved when taking data on the iron status into account.</p
Bilateral adrenocortical carcinoma in a patient with multiple endocrine neoplasia type 1 (MEN1) and a novel mutation in the MEN1 gene
The incidence of adrenal involvement in MEN1 syndrome has been reported between 9 and 45%, while the incidence of adrenocortical carcinoma (ACC) in MEN1 patients has been reported between 2.6 and 6%. In the literature data only unilateral development of ACCs in MEN1 patients has been reported. We report a 31 years-old female MEN1-patient, in whom hyperplasia of the parathyroid glands, prolactinoma, non functioning pancreatic endocrine carcinoma and functioning bilateral adrenal carcinomas were diagnosed. Interestingly, a not previously described in the literature data, novel germline mutation (p.E45V) in exon 2 of MEN1 gene, was detected. The association of exon 2 mutation of the MEN1 gene with bilateral adrenal carcinomas in MEN1 syndrome, should be further investigated
Limitations of Tc99m-MIBI-SPECT Imaging Scans in Persistent Primary Hyperparathyroidism
In primary hyperparathyroidism (PHPT) the predictive value of technetium 99m sestamibi single emission computed tomography (Tc99m-MIBI-SPECT) for localizing pathological parathyroid glands before a first parathyroidectomy (PTx) is 83-100%. Data are scarce in patients undergoing reoperative parathyroidectomy for persistent hyperparathyroidism. The aim of the present study was to determine the value of Tc99m-MIBI-SPECT in localizing residual hyperactive parathyroid tissue in patients with persistent primary hyperparathyroidism (PHPT) after initial excision of one or more pathological glands. We retrospectively evaluated the localizing accuracy of Tc99m-MIBI-SPECT scans in 19 consecutive patients with persistent PHPT who had a scan before reoperative parathyroidectomy. We used as controls 23 patients with sporadic PHPT who had a scan before initial surgery. In patients with persistent PHPT, Tc99m-MIBI-SPECT accurately localized a pathological parathyroid gland in 33% of cases before reoperative parathyroidectomy, compared to 61% before first PTx for sporadic PHPT. The Tc99m-MIBI-SPECT scan accurately localized intra-thyroidal glands in 2 of 7 cases and a mediastinal gland in 1 of 3 cases either before initial or reoperative parathyroidectomy. Our data suggest that the accuracy of Tc99m-MIBI-SPECT in localizing residual hyperactive glands is significantly lower before reoperative parathyroidectomy for persistent PHPT than before initial surgery for sporadic PHPT. These findings should be taken in consideration in the preoperative workup of patients with persistent primary hyperparathyroidis
Pig α<sub>1</sub>-Acid Glycoprotein: Characterization and First Description in Any Species as a Negative Acute Phase Protein.
The serum protein α1-acid glycoprotein (AGP), also known as orosomucoid, is generally described as an archetypical positive acute phase protein. Here, porcine AGP was identified, purified and characterized from pooled pig serum. It was found to circulate as a single chain glycoprotein having an apparent molecular weight of 43 kDa by SDS-PAGE under reducing conditions, of which approximately 17 kDa were accounted for by N-bound oligosaccharides. Those data correspond well with the properties of the protein predicted from the single porcine AGP gene (ORM1, Q29014 (UniProt)), containing 5 putative glycosylation sites. A monoclonal antibody (MAb) was produced and shown to quantitatively and specifically react with all microheterogenous forms of pig AGP as analyzed by 2-D electrophoresis. This MAb was used to develop an immunoassay (ELISA) for quantification of AGP in pig serum samples. The adult serum concentrations of pig AGP were in the range of 1-3 mg/ml in a number of conventional pig breeds while it was lower in Göttingen and Ossabaw minipigs (in the 0.3 to 0.6 mg/ml range) and higher in young (2-5 days old) conventional pigs (mean: 6.6 mg/ml). Surprisingly, pig AGP was found to behave as a negative acute phase protein during a range of experimental infections and aseptic inflammation with significant decreases in serum concentration and in hepatic ORM1 expression during the acute phase response. To our knowledge this is the first description in any species of AGP being a negative acute phase protein
Quantitative Mass Spectrometry Analysis Using PAcIFIC for the Identification of Plasma Diagnostic Biomarkers for Abdominal Aortic Aneurysm
BACKGROUND: Abdominal aortic aneurysm (AAA) is characterized by increased aortic vessel wall diameter (>1.5 times normal) and loss of parallelism. This disease is responsible for 1-4% mortality occurring on rupture in males older than 65 years. Due to its asymptomatic nature, proteomic techniques were used to search for diagnostic biomarkers that might allow surgical intervention under nonlife threatening conditions. METHODOLOGY/PRINCIPAL FINDINGS: Pooled human plasma samples of 17 AAA and 17 control patients were depleted of the most abundant proteins and compared using a data-independent shotgun proteomic strategy, Precursor Acquisition Independent From Ion Count (PAcIFIC), combined with spectral counting and isobaric tandem mass tags. Both quantitative methods collectively identified 80 proteins as statistically differentially abundant between AAA and control patients. Among differentially abundant proteins, a subgroup of 19 was selected according to Gene Ontology classification and implication in AAA for verification by Western blot (WB) in the same 34 individual plasma samples that comprised the pools. From the 19 proteins, 12 were detected by WB. Five of them were verified to be differentially up-regulated in individual plasma of AAA patients: adiponectin, extracellular superoxide dismutase, protein AMBP, kallistatin and carboxypeptidase B2. CONCLUSIONS/SIGNIFICANCE: Plasma depletion of high abundance proteins combined with quantitative PAcIFIC analysis offered an efficient and sensitive tool for the screening of new potential biomarkers of AAA. However, WB analysis to verify the 19 PAcIFIC identified proteins of interest proved inconclusive save for five proteins. We discuss these five in terms of their potential relevance as biological markers for use in AAA screening of population at risk
Postexercise High-Fat Feeding Supresses p70S6K1 Activity in Human Skeletal Muscle.
PURPOSE: To examine the effects of reduced CHO but high post-exercise fat availability on cell signalling and expression of genes with putative roles in regulation of mitochondrial biogenesis, lipid metabolism and muscle protein synthesis (MPS). METHODS: Ten males completed a twice per day exercise model (3.5 h between sessions) comprising morning high-intensity interval (HIT) (8 x 5-min at 85% VO2peak) and afternoon steady-state (SS) running (60 min at 70% VO2peak). In a repeated measures design, runners exercised under different isoenergetic dietary conditions consisting of high CHO (HCHO: 10 CHO, 2.5 Protein and 0.8 Fat g.kg per whole trial period) or reduced CHO but high fat availability in the post-exercise recovery periods (HFAT: 2.5 CHO, 2.5 Protein and 3.5 Fat g.kg per whole trial period). RESULTS: Muscle glycogen was lower (P<0.05) at 3 (251 vs 301 mmol.kgdw) and 15 h (182 vs 312 mmol.kgdw) post-SS exercise in HFAT compared to HCHO. AMPK-α2 activity was not increased post-SS in either condition (P=0.41) though comparable increases (all P<0.05) in PGC-1α, p53, CS, Tfam, PPAR and ERRα mRNA were observed in HCHO and HFAT. In contrast, PDK4 (P=0.003), CD36 (P=0.05) and CPT1 (P=0.03) mRNA were greater in HFAT in the recovery period from SS exercise compared with HCHO. p70S6K activity was higher (P=0.08) at 3 h post-SS exercise in HCHO versus HFAT (72.7 ± 51.9 vs 44.7 ± 27 fmol.min mg). CONCLUSION: Post-exercise high fat feeding does not augment mRNA expression of genes associated with regulatory roles in mitochondrial biogenesis though it does increase lipid gene expression. However, post-exercise p70S6K1 activity is reduced under conditions of high fat feeding thus potentially impairing skeletal muscle remodelling processes
- …