7 research outputs found

    Complex asteroseismology of the Slowly Pulsating B-type star HD74560

    Full text link
    We present the results of complex seismic modelling of the Slowly Pulsating B-type star HD74560. The star pulsates in five frequencies detected in photometric observations. For all these frequencies, we identify the mode degree, \ell. For two of them, found also in spectroscopic data, we are able to derived the empirical values of the complex nonadiabatic parameter ff. We test effects of chemical composition and opacity data. Our results show that the properties of seismic models of SPB stars differ significantly from those of the more massive β\beta Cephei stars.Comment: 4 pages, 2 figures, conference proceedings, to appear in ASS

    Differential rotation in rapidly rotating F-stars

    Full text link
    We obtained high quality spectra of 135 stars of spectral types F and later and derived ``overall'' broadening functions in selected wavelength regions utilizing a Least Squares Deconvolution (LSD) procedure. Precision values of the projected rotational velocity vsiniv \sin{i} were derived from the first zero of the Fourier transformed profiles and the shapes of the profiles were analyzed for effects of differential rotation. The broadening profiles of 70 stars rotating faster than vsini=45v \sin{i} = 45 km s1^{-1} show no indications of multiplicity nor of spottedness. In those profiles we used the ratio of the first two zeros of the Fourier transform q2/q1q_2/q_1 to search for deviations from rigid rotation. In the vast majority the profiles were found to be consistent with rigid rotation. Five stars were found to have flat profiles probably due to cool polar caps, in three stars cuspy profiles were found. Two out of those three cases may be due to extremely rapid rotation seen pole on, only in one case (vsini=52v \sin{i} = 52 km s1^{-1}) solar-like differential rotation is the most plausible explanation for the observed profile. These results indicate that the strength of differential rotation diminishes in stars rotating as rapidly as v \sin{i} \ga 50 km s1^{-1}.Comment: 10 pages, accepted for publication in A&

    Intrinsic spectral blueshifts in rapidly rotating stars?

    Full text link
    Spectroscopic radial velocities for several nearby open clusters suggest that spectra of (especially earlier-type) rapidly rotating stars are systematically blueshifted by 3 km/s or more, relative to the spectra of slowly rotating ones. Comparisons with astrometrically determined radial motions in the Hyades suggests this to be an absolute blueshift, relative to wavelengths naively expected from stellar radial motion and gravitational redshift. Analogous trends are seen also in most other clusters studied (Pleiades, Coma Berenices, Praesepe, Alpha Persei, IC 2391, NGC 6475, IC 4665, NGC 1976 and NGC 2516). Possible mechanisms are discussed, including photospheric convection, stellar pulsation, meridional circulation, and shock-wave propagation, as well as effects caused by template mismatch in determining wavelength displacements. For early-type stars, a plausible mechanism is shock-wave propagation upward through the photospheric line-forming regions. Such wavelength shifts thus permit studies of certain types of stellar atmospheric dynamics and - irrespective of their cause - may influence deduced open-cluster membership (when selected from common velocity) and deduced cluster dynamics (some types of stars might show fortuitous velocity patterns).Comment: Accepted by Astronomy & Astrophysics; 6 pages, 3 figure

    Rotational velocities of A-type stars. III. Velocity distributions

    Get PDF
    Aim - In this work, a sample of vsini of B9 to F2-type main sequence single stars has been built from highly homogeneous vsini parameters determined for a large sample cleansed from objects presenting the Am and Ap phenomenon as well as from all known binaries. The aim is to study the distributions of rotational velocities in the mass range of A-type stars for normal single objects. Methods - Robust statistical methods are used to rectify the vsini distributions from the projection effect and the error distribution. The equatorial velocity distributions are obtained for an amount of about 1100 stars divided in six groups defined by the spectral type, under the assumption of randomly orientated rotational axes. Results - We show that late B and early A-type main-sequence stars have genuine bimodal distributions of true equatorial rotational velocities due probably to phenomena of angular momentum loss and redistribution the star underwent before reaching the main sequence. A striking lack of slow rotators is noticed among intermediate and late A-type stars. The bimodal-like shape of their true equatorial rotational velocity distributions could be due to evolutionary effects.Comment: 16 pages, 10 figures, accepted in A&
    corecore