143 research outputs found

    Universal correlations of one-dimensional interacting electrons in the gas phase

    Full text link
    We consider dynamical correlation functions of short range interacting electrons in one dimension at finite temperature. Below a critical value of the chemical potential there is no Fermi surface anymore, and the system can no longer be described as a Luttinger liquid. Its low temperature thermodynamics is that of an ideal gas. We identify the impenetrable electron gas model as a universal model for the gas phase and present exact and explicit expressions for the asymptotics of correlation functions at small temperatures, in the presence of a magnetic field.Comment: 4 pages, Revte

    The Hubbard chain: Lieb-Wu equations and norm of the eigenfunctions

    Full text link
    We argue that the square of the norm of the Hubbard wave function is proportional to the determinant of a matrix, which is obtained by linearization of the Lieb-Wu equations around a solution. This means that in the vicinity of a solution the Lieb-Wu equations are non-degenerate, if the corresponding wave function is non-zero. We further derive an action that generates the Lieb-Wu equations and express our determinant formula for the square of the norm in terms of the Hessian determinant of this action.Comment: 11 pages, Late

    Lattice path integral approach to the one-dimensional Kondo model

    Full text link
    An integrable Anderson-like impurity model in a correlated host is derived from a gl(2|1)-symmetric transfer matrix by means of the Quantum-Inverse-Scattering-Method (QISM). Using the Quantum Transfer Matrix technique, free energy contributions of both the bulk and the impurity are calculated exactly. As a special case, the limit of a localized moment in a free bulk (Kondo limit) is performed in the Hamiltonian and in the free energy. In this case, high- and low-temperature scales are calculated with high accuracy.Comment: 26 pages, 9 figure

    Thermodynamics and short-range correlations of the XXZ chain close to its triple point

    Full text link
    The XXZ quantum spin chain has a triple point in its ground state hh-1/Δ1/\Delta phase diagram. This first order critical point is located at the joint end point of the two second order phase transition lines marking the transition from the gapless phase to the fully polarized phase and to the N\'eel ordered phase, respectively. We explore the magnetization and the short-range correlation functions in its vicinity using the exact solution of the model. In the critical regime above the triple point we observe a strong variation of all physical quantities on a low energy scale of order 1/Δ1/\Delta induced by the transversal quantum fluctuations. We interpret this phenomenon starting from a strong-coupling perturbation theory about the highly degenerate ground state of the Ising chain at the triple point. From the perturbation theory we identify the relevant scaling of the magnetic field and of the temperature. Applying the scaling to the exact solutions we obtain explicit formulae for the magnetization and short-range correlation functions at low temperatures.Comment: 18 pages, 7 figures, v2: figures rearranged, v3: a typo correcte

    Correlations in the impenetrable electron gas

    Full text link
    We consider non-relativistic electrons in one dimension with infinitely strong repulsive delta function interaction. We calculate the long-time, large-distance asymptotics of field-field correlators in the gas phase. The gas phase at low temperatures is characterized by the ideal gas law. We calculate the exponential decay, the power law corrections and the constant factor of the asymptotics. Our results are valid at any temperature. They simplify at low temperatures, where they are easily recognized as products of free fermionic correlation functions with corrections arising due to the interaction.Comment: 17 pages, Late

    Short-distance thermal correlations in the XXZ chain

    Full text link
    Recent studies have revealed much of the mathematical structure of the static correlation functions of the XXZ chain. Here we use the results of those studies in order to work out explicit examples of short-distance correlation functions in the infinite chain. We compute two-point functions ranging over 2, 3 and 4 lattice sites as functions of the temperature and the magnetic field for various anisotropies in the massless regime 1<Δ<1- 1 < \Delta < 1. It turns out that the new formulae are numerically efficient and allow us to obtain the correlations functions over the full parameter range with arbitrary precision.Comment: 25 pages, 5 colored figure
    corecore