3,158 research outputs found

    Diagnosing shock temperature with NH3_3 and H2_2O profiles

    Get PDF
    In a previous study of the L1157 B1 shocked cavity, a comparison between NH3_3(10_0-000_0) and H2_2O(110_{\rm 10}--101_{\rm 01}) transitions showed a striking difference in the profiles, with H2_2O emitting at definitely higher velocities. This behaviour was explained as a result of the high-temperature gas-phase chemistry occurring in the postshock gas in the B1 cavity of this outflow. If the differences in behaviour between ammonia and water are indeed a consequence of the high gas temperatures reached during the passage of a shock, then one should find such differences to be ubiquitous among chemically rich outflows. In order to determine whether the difference in profiles observed between NH3_3 and H2_2O is unique to L1157 or a common characteristic of chemically rich outflows, we have performed Herschel-HIFI observations of the NH3_3(10_0-00_0) line at 572.5 GHz in a sample of 8 bright low-mass outflow spots already observed in the H2_2O(110_{\rm 10}--101_{\rm 01}) line within the WISH KP. We detected the ammonia emission at high-velocities at most of the outflows positions. In all cases, the water emission reaches higher velocities than NH3_3, proving that this behaviour is not exclusive of the L1157-B1 position. Comparisons with a gas-grain chemical and shock model confirms, for this larger sample, that the behaviour of ammonia is determined principally by the temperature of the gas.Comment: Accepted for publication in the Monthly Notices of the Royal Astronomical Societ

    Assessment of the Production of Value-Added Chemical Compounds from Sewage Sludge Pyrolysis Liquids

    Get PDF
    A procedure to analyze sewage sludge (SS) pyrolysis liquids based on solvent fractionation has been developed. Pyrolysis liquids are separated into three different fractions: heptane soluble (Hep-sol), dichloromethane soluble (DCM-sol), and hydrochloric acid soluble (HCl-sol). Diverse techniques (GC-MS, UPLC-TOF-MS) were employed to qualitatively and quantitatively analyze liquid fractions to assess the potential production of value-added chemicals. Aliphatic hydrocarbons, aliphatic nitriles, and steroids were mostly separated in the Hep-sol fraction, phenols and fatty acids in the DCM-sol fraction, and carboxylic acids and amides in the HCl-sol fraction. The largest production was obtained for ammonia (10–14 kg per tonne of SS) and a-olefins (8–9 kg per tonne of SS). The potential production of some of these value-added chemicals from SS pyrolysis liquid was compared with their current European production. In the case of a-olefins, 16 % of their European production could be achieved by SS pyrolysis

    The CHESS survey of the L1157-B1 bow-shock: high and low excitation water vapor

    Full text link
    Molecular outflows powered by young protostars strongly affect the kinematics and chemistry of the natal molecular cloud through strong shocks resulting in substantial modifications of the abundance of several species. As part of the "Chemical Herschel Surveys of Star forming regions" guaranteed time key program, we aim at investigating the physical and chemical conditions of H20 in the brightest shock region B1 of the L1157 molecular outflow. We observed several ortho- and para-H2O transitions using HIFI and PACS instruments on board Herschel, providing a detailed picture of the kinematics and spatial distribution of the gas. We performed a LVG analysis to derive the physical conditions of H2O shocked material, and ultimately obtain its abundance. We detected 13 H2O lines probing a wide range of excitation conditions. PACS maps reveal that H2O traces weak and extended emission associated with the outflow identified also with HIFI in the o-H2O line at 556.9 GHz, and a compact (~10") bright, higher-excitation region. The LVG analysis of H2O lines in the bow-shock show the presence of two gas components with different excitation conditions: a warm (Tkin~200-300 K) and dense (n(H2)~(1-3)x10^6 cm-3) component with an assumed extent of 10" and a compact (~2"-5") and hot, tenuous (Tkin~900-1400 K, n(H2)~10^3-10^4 cm-3) gas component, which is needed to account for the line fluxes of high Eu transitions. The fractional abundance of the warm and hot H2O gas components is estimated to be (0.7-2)x10^{-6} and (1-3)x10^{-4}, respectively. Finally, we identified an additional component in absorption in the HIFI spectra of H2O lines connecting with the ground state level, probably arising from the photodesorption of icy mantles of a water-enriched layer at the edges of the cloud.Comment: Accepted for publication in A&A. 12 pages, 9 figures, 4 table

    Evidence of ongoing radial migration in NGC 6754: Azimuthal variations of the gas properties

    Get PDF
    Understanding the nature of spiral structure in disk galaxies is one of the main, and still unsolved questions in galactic astronomy. However, theoretical works are proposing new testable predictions whose detection is becoming feasible with recent development in instrumentation. In particular, streaming motions along spiral arms are expected to induce azimuthal variations in the chemical composition of a galaxy at a given galactic radius. In this letter we analyse the gas content in NGC 6754 with VLT/MUSE data to characterise its 2D chemical composition and Hα\alpha line-of-sight velocity distribution. We find that the trailing (leading) edge of the NGC 6754 spiral arms show signatures of tangentially-slower, radially-outward (tangentially-faster, radially-inward) streaming motions of metal-rich (poor) gas over a large range of radii. These results show direct evidence of gas radial migration for the first time. We compare our results with the gas behaviour in a NN-body disk simulation showing spiral morphological features rotating with a similar speed as the gas at every radius, in good agreement with the observed trend. This indicates that the spiral arm features in NGC 6754 may be transient and rotate similarly as the gas does at a large range of radii.Comment: 8 pages, 4 figures, accepted for publication in ApJL 2016 September 2

    Early Science with the Large Millimetre Telescope: Molecules in the Extreme Outflow of a proto-Planetary Nebula

    Get PDF
    Extremely high velocity emission likely related to jets is known to occur in some proto-Planetary Nebulae. However, the molecular complexity of this kinematic component is largely unknown. We observed the known extreme outflow from the proto-Planetary Nebula IRAS 16342-3814, a prototype water fountain, in the full frequency range from 73 to 111 GHz with the RSR receiver on the Large Millimetre Telescope. We detected the molecules SiO, HCN, SO, and 13^{13}CO. All molecular transitions, with the exception of the latter are detected for the first time in this source, and all present emission with velocities up to a few hundred km s1^{-1}. IRAS 16342-3814 is therefore the only source of this kind presenting extreme outflow activity simultaneously in all these molecules, with SO and SiO emission showing the highest velocities found of these species in proto-Planetary Nebulae. To be confirmed is a tentative weak SO component with a FWHM \sim 700 km s1^{-1}. The extreme outflow gas consists of dense gas (nH2>_{\rm H_2} > 104.8^{4.8}--105.7^{5.7} cm3^{-3}), with a mass larger than \sim 0.02--0.15 M_{\odot}. The relatively high abundances of SiO and SO may be an indication of an oxygen-rich extreme high velocity gas.Comment: Accepted for publication in Monthly Notices of the Royal Astronomical Society Letter

    Lessons from the operation of the "Penning-Fluorescent" TPC and prospects

    Get PDF
    We have recently reported the development of a new type of high-pressure Xenon time projection chamber operated with an ultra-low diffusion mixture and that simultaneously displays Penning effect and fluorescence in the near-visible region (300 nm). The concept, dubbed `Penning-Fluorescent' TPC, allows the simultaneous reconstruction of primary charge and scintillation with high topological and calorimetric fidelity

    Gaseous time projection chambers for rare event detection: Results from the T-REX project. II. Dark matter

    Full text link
    As part of the T-REX project, a number of R&D and prototyping activities have been carried out during the last years to explore the applicability of Micromegas-read gaseous TPCs in rare event searches like double beta decay (DBD), axion research and low-mass WIMP searches. While in the companion paper we focus on DBD, in this paper we focus on the results regarding the search for dark matter candidates, both axions and WIMPs. Small ultra-low background Micromegas detectors are used to image the x-ray signal expected in axion helioscopes like CAST at CERN. Background levels as low as 0.8×1060.8\times 10^{-6} c keV1^{-1}cm2^{-2}s1^{-1} have already been achieved in CAST while values down to 107\sim10^{-7} c keV1^{-1}cm2^{-2}s1^{-1} have been obtained in a test bench placed underground in the Laboratorio Subterr\'aneo de Canfranc. Prospects to consolidate and further reduce these values down to 108\sim10^{-8} c keV1^{-1}cm2^{-2}s1^{-1}will be described. Such detectors, placed at the focal point of x-ray telescopes in the future IAXO experiment, would allow for 105^5 better signal-to-noise ratio than CAST, and search for solar axions with gaγg_{a\gamma} down to few 1012^{12} GeV1^{-1}, well into unexplored axion parameter space. In addition, a scaled-up version of these TPCs, properly shielded and placed underground, can be competitive in the search for low-mass WIMPs. The TREX-DM prototype, with \sim0.300 kg of Ar at 10 bar, or alternatively \sim0.160 kg of Ne at 10 bar, and energy threshold well below 1 keV, has been built to test this concept. We will describe the main technical solutions developed, as well as the results from the commissioning phase on surface. The anticipated sensitivity of this technique might reach 1044\sim10^{-44} cm2^2 for low mass (<10<10 GeV) WIMPs, well beyond current experimental limits in this mass range.Comment: Published in JCAP. New version with erratum incorporated (new figure 14
    corecore