8 research outputs found

    Activation of autophagy by FOXO3 regulates redox homeostasis during osteogenic differentiation

    Get PDF
    Bone remodeling is a continuous physiological process that requires constant generation of new osteoblasts from mesenchymal stem cells (MSCs). Differentiation of MSCs to osteoblast requires a metabolic switch from glycolysis to increased mitochondrial respiration to ensure the sufficient energy supply to complete this process. As a consequence of this increased mitochondrial metabolism, the levels of endogenous reactive oxygen species (ROS) rise. In the current study we analyzed the role of forkhead box O3 (FOXO3) in the control of ROS levels in human MSCs (hMSCs) during osteogenic differentiation. Treatment of hMSCs with H2O2 induced FOXO3 phosphorylation at Ser294 and nuclear translocation. This ROS-mediated activation of FOXO3 was dependent on mitogen-activated protein kinase 8 (MAPK8/JNK) activity. Upon FOXO3 downregulation, osteoblastic differentiation was impaired and hMSCs lost their ability to control elevated ROS levels. Our results also demonstrate that in response to elevated ROS levels, FOXO3 induces autophagy in hMSCs. In line with this, impairment of autophagy by autophagy-related 7 (ATG7) knockdown resulted in a reduced capacity of hMSCs to regulate elevated ROS levels, together with a reduced osteoblast differentiation. Taken together our findings are consistent with a model where in hMSCs, FOXO3 is required to induce autophagy and thereby reduce elevated ROS levels resulting from the increased mitochondrial respiration during osteoblast differentiation. These new molecular insights provide an important contribution to our better understanding of bone physiology

    A922 Sequential measurement of 1 hour creatinine clearance (1-CRCL) in critically ill patients at risk of acute kidney injury (AKI)

    Get PDF
    Meeting abstrac

    Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)1.

    Get PDF
    In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide realistic and reasonable critiques of reports that are focused on these processes. These guidelines are not meant to be a dogmatic set of rules, because the appropriateness of any assay largely depends on the question being asked and the system being used. Moreover, no individual assay is perfect for every situation, calling for the use of multiple techniques to properly monitor autophagy in each experimental setting. Finally, several core components of the autophagy machinery have been implicated in distinct autophagic processes (canonical and noncanonical autophagy), implying that genetic approaches to block autophagy should rely on targeting two or more autophagy-related genes that ideally participate in distinct steps of the pathway. Along similar lines, because multiple proteins involved in autophagy also regulate other cellular pathways including apoptosis, not all of them can be used as a specific marker for bona fide autophagic responses. Here, we critically discuss current methods of assessing autophagy and the information they can, or cannot, provide. Our ultimate goal is to encourage intellectual and technical innovation in the field

    Autophagy in the renewal, differentiation and homeostasis of immune cells

    No full text
    Across all branches of the immune system, the process of autophagy is fundamentally important in cellular development, function and homeostasis. Strikingly, this evolutionarily ancient pathway for intracellular recycling has been adapted to enable a high degree of functional complexity and specialization. However, although the requirement for autophagy in normal immune cell function is clear, the mechanisms involved are much less so and encompass control of metabolism, selective degradation of substrates and organelles and participation in cell survival decisions. We review here the crucial functions of autophagy in controlling the differentiation and homeostasis of multiple immune cell types and discuss the potential mechanisms involved

    Autophagy in the renewal, differentiation and homeostasis of immune cells

    No full text

    CTA contributions to the 33rd International Cosmic Ray Conference (ICRC2013)

    Full text link
    Compilation of CTA contributions to the proceedings of the 33rd International Cosmic Ray Conference (ICRC2013), which took place in 2-9 July, 2013, in Rio de Janeiro, BrazilComment: Index of CTA conference proceedings at the ICRC2013, Rio de Janeiro (Brazil). v1: placeholder with no arXiv links yet, to be replaced once individual contributions have been all submitted. v2: final with arXiv links to all CTA contributions and full author lis
    corecore