132 research outputs found
Effect of topology on the transport properties of two interacting dots
The transport properties of a system of two interacting dots, one of them
directly connected to the leads constituting a side-coupled configuration
(SCD), are studied in the weak and strong tunnel-coupling limits. The
conductance behavior of the SCD structure has new and richer physics than the
better studied system of two dots aligned with the leads (ACD). In the weak
coupling regime and in the case of one electron per dot, the ACD configuration
gives rise to two mostly independent Kondo states. In the SCD topology, the
inserted dot is in a Kondo state while the side-connected one presents Coulomb
blockade properties. Moreover, the dot spins change their behavior, from an
antiferromagnetic coupling to a ferromagnetic correlation, as a consequence of
the interaction with the conduction electrons. The system is governed by the
Kondo effect related to the dot that is embedded into the leads. The role of
the side-connected dot is to introduce, when at resonance, a new path for the
electrons to go through giving rise to the interferences responsible for the
suppression of the conductance. These results depend on the values of the
intra-dot Coulomb interactions. In the case where the many-body interaction is
restricted to the side-connected dot, its Kondo correlation is responsible for
the scattering of the conduction electrons giving rise to the conductance
suppression
Realistic Neutrino Masses from Multi-brane Extensions of the Randall-Sundrum Model?
Scenarios based on the existence of large or warped (Randall-Sundrum model)
extra dimensions have been proposed for addressing the long standing puzzle of
gauge hierarchy problem. Within the contexts of both those scenarios, a novel
and original type of mechanism generating small (Dirac) neutrino masses, which
relies on the presence of additional right-handed neutrinos that propagate in
the bulk, has arisen. The main objective of the present study is to determine
whether this geometrical mechanism can produce reasonable neutrino masses also
in the interesting multi-brane extensions of the Randall-Sundrum model. We
demonstrate that, in some multi-brane extensions, neutrino masses in agreement
with all relevant experimental bounds can indeed be generated but at the price
of a constraint (stronger than the existing ones) on the bulk geometry, and
that the other multi-brane models even conflict with those experimental bounds.Comment: 29 pages, 3 figures, Latex file. References added, study extende
Indoor air quality in Michigan schools
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/72796/1/j.1600-0668.2006.00459.x.pd
Planck intermediate results I : Further validation of new Planck clusters with XMM-Newton
Peer reviewe
Advanced Virgo Plus. Future perspectives
While completing the commissioning phase to prepare the Virgo interferometer for the next joint Observation Run (O4), the Virgo collaboration is also finalizing the design of the next upgrades to the detector to be employed in the following Observation Run (O5). The major upgrade will concern decreasing the thermal noise limit, which will imply using very large test masses and increased laser beam size. But this will not be the only upgrade to be implemented in the break between the O4 and O5 observation runs to increase the Virgo detector strain sensitivity. The paper will cover the challenges linked to this upgrade and implications on the detector’s reach and observational potential, reflecting the talk given at 12th Cosmic Ray International Seminar - CRIS 2022 held in September 2022 in Napoli
Higher harmonic anisotropic flow measurements of charged particles in Pb-Pb collisions at 2.76 TeV
We report on the first measurement of the triangular , quadrangular
, and pentagonal charged particle flow in Pb-Pb collisions at 2.76
TeV measured with the ALICE detector at the CERN Large Hadron Collider. We show
that the triangular flow can be described in terms of the initial spatial
anisotropy and its fluctuations, which provides strong constraints on its
origin. In the most central events, where the elliptic flow and
have similar magnitude, a double peaked structure in the two-particle azimuthal
correlations is observed, which is often interpreted as a Mach cone response to
fast partons. We show that this structure can be naturally explained from the
measured anisotropic flow Fourier coefficients.Comment: 10 pages, 4 figures, published version, figures at
http://aliceinfo.cern.ch/ArtSubmission/node/387
GRB 221009A observations with LST-1 at VHE gamma rays
On October 9th, 2022, the brightest gamma-ray burst (GRB) since the first GRB observation in the late sixties was detected by the Fermi-GBM and Swift-BAT telescopes (GRB 221009A). The outstanding characteristics of this GRB triggered extensive follow-up observations of the source across all wavebands, including at very-high-energy (VHE) gamma rays with the Large-Sized Telescope prototype (LST-1) of the upcoming Cherenkov Telescope Array Observatory (CTAO). In this contribution, we present the analysis and results of the LST-1 observation campaign in October 2022, focusing on the data taken under nominal observing conditions and above 200 GeV. © Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
Genome-wide association study identifies multiple risk loci for chronic lymphocytic leukemia
Genome-wide association studies (GWAS) have previously identified 13 loci associated with risk of chronic lymphocytic leukemia or small lymphocytic lymphoma (CLL). To identify additional CLL susceptibility loci, we conducted the largest meta-analysis for CLL thus far, including four GWAS with a total of 3,100 individuals with CLL (cases) and 7,667 controls. In the meta-analysis, we identified ten independent associated SNPs in nine new loci at 10q23.31 (ACTA2 or FAS (ACTA2/FAS), P = 1.22 x 10(-14)), 18q21.33 (BCL2, P = 7.76 x 10(-11)), 11p15.5 (C11orf21, P = 2.15 x 10(-10)), 4q25 (LEF1, P = 4.24 x 10(-10)), 2q33.1 (CASP10 or CASP8 (CASP10/CASP8), P = 2.50 x 10(-9)), 9p21.3 (CDKN2B-AS1, P = 1.27 x 10(-8)), 18q21.32 (PMAIP1, P = 2.51 x 10(-8)), 15q15.1 (BMF, P = 2.71 x 10(-10)) and 2p22.2 (QPCT, P = 1.68 x 10(-8)), as well as an independent signal at an established locus (2q13, ACOXL, P = 2.08 x 10(-18)). We also found evidence for two additional promising loci below genome-wide significance at 8q22.3 (ODF1, P = 5.40 x 10(-8)) and 5p15.33 (TERT, P = 1.92 x 10(-7)). Although further studies are required, the proximity of several of these loci to genes involved in apoptosis suggests a plausible underlying biological mechanism
Tort Claims Against Gun Manufacturers for Crime-Related Injuries: Defining a Suitable Role for the Tort System in Regulating the Firearms Industry
The polymorphism L412F in TLR3 inhibits autophagy and is a marker of severe COVID-19 in males
The polymorphism L412F in TLR3 has been associated with several infectious diseases. However, the mechanism underlying this association is still unexplored. Here, we show that the L412F polymorphism in TLR3 is a marker of severity in COVID-19. This association increases in the sub-cohort of males. Impaired macroautophagy/autophagy and reduced TNF/TNFα production was demonstrated in HEK293 cells transfected with TLR3L412F-encoding plasmid and stimulated with specific agonist poly(I:C). A statistically significant reduced survival at 28 days was shown in L412F COVID-19 patients treated with the autophagy-inhibitor hydroxychloroquine (p = 0.038). An increased frequency of autoimmune disorders such as co-morbidity was found in L412F COVID-19 males with specific class II HLA haplotypes prone to autoantigen presentation. Our analyses indicate that L412F polymorphism makes males at risk of severe COVID-19 and provides a rationale for reinterpreting clinical trials considering autophagy pathways. Abbreviations: AP: autophagosome; AUC: area under the curve; BafA1: bafilomycin A1; COVID-19: coronavirus disease-2019; HCQ: hydroxychloroquine; RAP: rapamycin; ROC: receiver operating characteristic; SARS-CoV-2: severe acute respiratory syndrome coronavirus 2; TLR: toll like receptor; TNF/TNF-α: tumor necrosis factor
- …
