317 research outputs found

    Mycobacterium ulcerans DNA Not Detected in Faecal Samples from Buruli Ulcer Patients: Results of a Pilot Study

    Get PDF
    It has recently been shown that in a Buruli ulcer (BU) endemic region of southeastern Australia, significant numbers of possums (native tree-dwelling marsupials) have clinical BU disease. Furthermore, based on quantitative PCR (qPCR) analysis, animals with BU lesions (and some without) shed M. ulcerans DNA in their faeces, indicative of bacterial loads of up to 108 organisms/gram. These findings led us to propose that humans might also harbour M. ulcerans in their gastrointestinal tract and shed the bacterium in their faeces. We conducted a pilot study and collected faecal swabs from 26 patients with confirmed BU and 31 healthy household controls. Faecal samples were also collected from 10 healthy controls from non-endemic regions in Ghana. All 67 specimens were negative when tested by IS2404 PCR. The detection sensitivity of this method was ≥104 bacteria per gram (wet-weight) of human faecal material. We conclude that the human gastrointestinal tract is unlikely to be a significant reservoir of M. ulcerans

    Rapid and sensitive detection of mycobacterium ulcerans by use of a loop-mediated isothermal amplification test

    Get PDF
    This work reports the design and evaluation of a rapid loop-mediated isothermal amplification test for detecting Mycobacterium ulcerans DNA based on the multicopy insertion sequence IS2404. The test is robust and specific with a detection limit equivalent to 20 copies of the target sequence (0.01 to 0.1 genome). The test has potential for the diagnosis of Buruli ulcer under field conditions

    Risk of Buruli Ulcer and Detection of Mycobacterium ulcerans in Mosquitoes in Southeastern Australia

    Get PDF
    Buruli ulcer (BU) is a destructive skin condition caused by infection with the environmental bacterium, Mycobacterium ulcerans. BU has been reported in more than 30 countries in Africa, the Americas, Asia and the Western Pacific. How people become infected with M. ulcerans is not completely understood, but numerous studies have explored the role of biting insects. In 2007, it was discovered that M. ulcerans could be detected in association with mosquitoes trapped in one town in southeastern Australia during a large outbreak of BU. In the present study we investigated whether there was a relationship between the incidence of BU in humans in several towns and the likelihood of detecting M. ulcerans in mosquitoes trapped in those locations. We found a strong association between the proportion of M. ulcerans-positive mosquitoes and the incidence of human disease. The results of this study strengthen the hypothesis that mosquitoes are involved in the transmission of M. ulcerans in southeastern Australia. This has implications for the development of strategies to control and prevent BU

    Deep and abyssal ocean warming from 35 years of repeat hydrography

    Get PDF
    Global and regional ocean warming deeper than 2000 m is investigated using 35 years of sustained repeat hydrographic survey data starting in 1981. The global long-term temperature trend below 2000 m, representing the time period 1991–2010, is equivalent to a mean heat flux of 0.065 ± 0.040 W m?2 applied over the Earth's surface area. The strongest warming rates are found in the abyssal layer (4000–6000 m), which contributes to one third of the total heat uptake with the largest contribution from the Southern and Pacific Oceans. A similar regional pattern is found in the deep layer (2000–4000 m), which explains the remaining two thirds of the total heat uptake yet with larger uncertainties. The global average warming rate did not change within uncertainties pre-2000 versus post-2000, whereas ocean average warming rates decreased in the Pacific and Indian Oceans and increased in the Atlantic and Southern Oceans

    Climate and Landscape Factors Associated with Buruli Ulcer Incidence in Victoria, Australia

    Get PDF
    Background Buruli ulcer (BU), caused by Mycobacterium ulcerans (M. ulcerans), is a necrotizing skin disease found in more than 30 countries worldwide. BU incidence is highest in West Africa; however, cases have substantially increased in coastal regions of southern Australia over the past 30 years. Although the mode of transmission remains uncertain, the spatial pattern of BU emergence in recent years seems to suggest that there is an environmental niche for M. ulcerans and BU prevalence. Methodology/Principal Findings Network analysis was applied to BU cases in Victoria, Australia, from 1981–2008. Results revealed a non-random spatio-temporal pattern at the regional scale as well as a stable and efficient BU disease network, indicating that deterministic factors influence the occurrence of this disease. Monthly BU incidence reported by locality was analyzed with landscape and climate data using a multilevel Poisson regression approach. The results suggest the highest BU risk areas occur at low elevations with forested land cover, similar to previous studies of BU risk in West Africa. Additionally, climate conditions as far as 1.5 years in advance appear to impact disease incidence. Warmer and wetter conditions 18–19 months prior to case emergence, followed by a dry period approximately 5 months prior to case emergence seem to favor the occurrence of BU. Conclusions/Significance The BU network structure in Victoria, Australia, suggests external environmental factors favor M. ulcerans transmission and, therefore, BU incidence. A unique combination of environmental conditions, including land cover type, temperature and a wet-dry sequence, may produce habitat characteristics that support M. ulcerans transmission and BU prevalence. These findings imply that future BU research efforts on transmission mechanisms should focus on potential vectors/reservoirs found in those environmental niches. Further, this study is the first to quantitatively estimate environmental lag times associated with BU outbreaks, providing insights for future transmission investigations.This project was supported by the World Health Organization and the National Institutes of Health and Fogarty International Center (NIH - R01TW007550). The content is solely the responsibility of the authors and does not necessarily represent the official views of the Fogarty International Center or the National Institutes of Health. R.W. Merritt is gratefully acknowledged for supporting this research as part of NIH grant R01TW007550
    corecore