28 research outputs found

    New Insights into the Diversity of Marine Picoeukaryotes

    Get PDF
    Over the last decade, culture-independent surveys of marine picoeukaryotic diversity based on 18S ribosomal DNA clone libraries have unveiled numerous sequences of novel high-rank taxa. This newfound diversity has significantly altered our understanding of marine microbial food webs and the evolution of eukaryotes. However, the current picture of marine eukaryotic biodiversity may be significantly skewed by PCR amplification biases, occurrence of rDNA genes in multiple copies within a single cell, and the capacity of DNA to persist as extracellular material. In this study we performed an analysis of the metagenomic dataset from the Global Ocean Survey (GOS) expedition, seeking eukaryotic ribosomal signatures. This PCR-free approach revealed similar phylogenetic patterns to clone library surveys, suggesting that PCR steps do not impose major biases in the exploration of environmental DNA. The different cell size fractions within the GOS dataset, however, displayed a distinct picture. High protistan diversity in the <0.8 µm size fraction, in particular sequences from radiolarians and ciliates (and their absence in the 0.8–3 µm fraction), suggest that most of the DNA in this fraction comes from extracellular material from larger cells. In addition, we compared the phylogenetic patterns from rDNA and reverse transcribed rRNA 18S clone libraries from the same sample harvested in the Mediterranean Sea. The libraries revealed major differences, with taxa such as pelagophytes or picobiliphytes only detected in the 18S rRNA library. MAST (Marine Stramenopiles) appeared as potentially prominent grazers and we observed a significant decrease in the contribution of alveolate and radiolarian sequences, which overwhelmingly dominated rDNA libraries. The rRNA approach appears to be less affected by taxon-specific rDNA copy number and likely better depicts the biogeochemical significance of marine protists

    Uncovering trophic interactions in arthropod predators through DNA shotgun-sequencing of gut contents

    Get PDF
    Characterizing trophic networks is fundamental to many questions in ecology, but this typically requires painstaking efforts, especially to identify the diet of small generalist predators. Several attempts have been devoted to develop suitable molecular tools to determine predatory trophic interactions through gut content analysis, and the challenge has been to achieve simultaneously high taxonomic breadth and resolution. General and practical methods are still needed, preferably independent of PCR amplification of barcodes, to recover a broader range of interactions. Here we applied shotgun-sequencing of the DNA from arthropod predator gut contents, extracted from four common coccinellid and dermapteran predators co-occurring in an agroecosystem in Brazil. By matching unassembled reads against six DNA reference databases obtained from public databases and newly assembled mitogenomes, and filtering for high overlap length and identity, we identified prey and other foreign DNA in the predator guts. Good taxonomic breadth and resolution was achieved (93% of prey identified to species or genus), but with low recovery of matching reads. Two to nine trophic interactions were found for these predators, some of which were only inferred by the presence of parasitoids and components of the microbiome known to be associated with aphid prey. Intraguild predation was also found, including among closely related ladybird species. Uncertainty arises from the lack of comprehensive reference databases and reliance on low numbers of matching reads accentuating the risk of false positives. We discuss caveats and some future prospects that could improve the use of direct DNA shotgun-sequencing to characterize arthropod trophic networks

    Nitrogenase Gene Amplicons from Global Marine Surface Waters Are Dominated by Genes of Non-Cyanobacteria

    Get PDF
    Cyanobacteria are thought to be the main N2-fixing organisms (diazotrophs) in marine pelagic waters, but recent molecular analyses indicate that non-cyanobacterial diazotrophs are also present and active. Existing data are, however, restricted geographically and by limited sequencing depths. Our analysis of 79,090 nitrogenase (nifH) PCR amplicons encoding 7,468 unique proteins from surface samples (ten DNA samples and two RNA samples) collected at ten marine locations world-wide provides the first in-depth survey of a functional bacterial gene and yield insights into the composition and diversity of the nifH gene pool in marine waters. Great divergence in nifH composition was observed between sites. Cyanobacteria-like genes were most frequent among amplicons from the warmest waters, but overall the data set was dominated by nifH sequences most closely related to non-cyanobacteria. Clusters related to Alpha-, Beta-, Gamma-, and Delta-Proteobacteria were most common and showed distinct geographic distributions. Sequences related to anaerobic bacteria (nifH Cluster III) were generally rare, but preponderant in cold waters, especially in the Arctic. Although the two transcript samples were dominated by unicellular cyanobacteria, 42% of the identified non-cyanobacterial nifH clusters from the corresponding DNA samples were also detected in cDNA. The study indicates that non-cyanobacteria account for a substantial part of the nifH gene pool in marine surface waters and that these genes are at least occasionally expressed. The contribution of non-cyanobacterial diazotrophs to the global N2 fixation budget cannot be inferred from sequence data alone, but the prevalence of non-cyanobacterial nifH genes and transcripts suggest that these bacteria are ecologically significant

    The importance of sample archiving in microbial ecology

    No full text

    Modulation of the intestinal microbiota and morphology of tilapia, Oreochromis niloticus, following the application of a multi-species probiotic.

    No full text
    The intestinal microbiota and morphology of tilapia (Oreochromis niloticus) were investigated after the application of a multi-species probiotic containing Lactobacillus reuteri, Bacillus subtilis, Enterococcus faecium and Pediococcus acidilactici (AquaStar(®) Growout). Tilapia (55.03 ± 0.44 g) were fed either a control diet or a probiotic diet (control diet supplemented with AquaStar(®) Growout at 5 g kg(-1)). After four and eight weeks, culture-dependent analysis showed higher levels of lactic acid bacteria (LAB), enterococci and Bacillus spp. in the mucosa and digesta of fish fed AquaStar(®) Growout. At week four, polymerase chain reaction denaturing gradient gel electrophoresis (PCR-DGGE) revealed a higher similarity within the probiotic fed replicates than replicates of the control group; after eight weeks, the compositional dissimilarity of the microbiome profiles between the groups was greater than the dissimilarities within each group (P 99 % of reads). Bacillus, Cetobacterium and Mycobacterium were the dominant genera in the digesta of control fish whereas Bacillus, Enterococcus and Pediococcus were the largest constituents in probiotic-fed fish. The addition of AquaStar(®) Growout to tilapia diets led to increased populations of intraepithelial leucocytes, a higher absorptive surface area index and higher microvilli density in the intestine. These data suggest that AquaStar(®) Growout can modulate both the intestinal microbiota and morphology of tilapia
    corecore