62 research outputs found
Mechanisms of Legionella pneumophila-induced interleukin-8 expression in human lung epithelial cells
<p>Abstract</p> <p>Background</p> <p><it>Legionella pneumophila </it>is a facultative intracellular bacterium, capable of replicating within the phagosomes of macrophages and monocytes, but little is known about its interaction with human lung epithelial cells. We investigated the effect of <it>L. pneumophila </it>on the expression of interleukin-8 (IL-8) in human A549 alveolar and NCI-H292 tracheal epithelial cell lines.</p> <p>Results</p> <p>Infection of <it>L. pneumophila </it>strain, but not heat-killed strain, resulted in upregulation of IL-8. IL-8 mRNA expression was induced immediately after the infection and its signal became gradually stronger until 24 h after infection. On the other hand, IL-8 expression in A549 cells infected with <it>L. pneumophila </it>lacking a functional type IV secretion system was transient. The IL-8 expression was slightly induced at 16 h and increased at 24 h after infection with flagellin-deficient <it>Legionella</it>. Activation of the IL-8 promoter by <it>L. pneumophila </it>infection occurred through the action of nuclear factor-κB (NF-κB). Transfection of dominant negative mutants of NF-κB-inducing kinase, IκB kinase and IκB inhibited <it>L. pneumophila</it>-mediated activation of IL-8 promoter. Treatment with hsp90 inhibitor suppressed <it>L. pneumophila</it>-induced IL-8 mRNA due to deactivation of NF-κB.</p> <p>Conclusion</p> <p>Collectively, these results suggest that <it>L. pneumophila </it>induces activation of NF-κB through an intracellular signaling pathway that involves NF-κB-inducing kinase and IκB kinase, leading to IL-8 gene transcription, and that hsp90 acts as a crucial regulator in <it>L. pneumophila</it>-induced IL-8 expression, presumably contributing to immune response in <it>L. pneumophila</it>. The presence of flagellin and a type IV secretion system are critical for <it>Legionella </it>to induce IL-8 expression in lung epithelial cells.</p
Molecular characterization of Legionella pneumophila-induced interleukin-8 expression in T cells
Article Retracte
Legionella pneumophila infection induces programmed cell death, caspase activation, and release of high-mobility group box 1 protein in A549 alveolar epithelial cells: inhibition by methyl prednisolone
<p>Abstract</p> <p>Background</p> <p><it>Legionella pneumophila </it>pneumonia often exacerbates acute lung injury (ALI) and acute respiratory distress syndrome (ARDS). Apoptosis of alveolar epithelial cells is considered to play an important role in the pathogenesis of ALI and ARDS. In this study, we investigated the precise mechanism by which A549 alveolar epithelial cells induced by <it>L. pneumophila </it>undergo apoptosis. We also studied the effect of methyl prednisolone on apoptosis in these cells.</p> <p>Methods</p> <p>Nuclear deoxyribonucleic acid (DNA) fragmentation and caspase activation in <it>L. pneumophila</it>-infected A549 alveolar epithelial cells were assessed using the terminal deoxyribonucleotidyl transferase-mediated triphosphate (dUTP)-biotin nick end labeling method (TUNEL method) and colorimetric caspase activity assays. The virulent <it>L. pneumophila </it>strain AA100jm and the avirulent <it>dotO </it>mutant were used and compared in this study. In addition, we investigated whether methyl prednisolone has any influence on nuclear DNA fragmentation and caspase activation in A549 alveolar epithelial cells infected with <it>L. pneumophila</it>.</p> <p>Results</p> <p>The virulent strain of <it>L. pneumophila </it>grew within A549 alveolar epithelial cells and induced subsequent cell death in a dose-dependent manner. The avirulent strain <it>dotO </it>mutant showed no such effect. The virulent strains of <it>L. pneumophila </it>induced DNA fragmentation (shown by TUNEL staining) and activation of caspases 3, 8, 9, and 1 in A549 cells, while the avirulent strain did not. High-mobility group box 1 (HMGB1) protein was released from A549 cells infected with virulent <it>Legionella</it>. Methyl prednisolone (53.4 μM) did not influence the intracellular growth of <it>L. pneumophila </it>within alveolar epithelial cells, but affected DNA fragmentation and caspase activation of infected A549 cells.</p> <p>Conclusion</p> <p>Infection of A549 alveolar epithelial cells with <it>L. pneumophila </it>caused programmed cell death, activation of various caspases, and release of HMGB1. The dot/icm system, a major virulence factor of <it>L. pneumophila</it>, is involved in the effects we measured in alveolar epithelial cells. Methyl prednisolone may modulate the interaction of <it>Legionella </it>and these cells.</p
Impulse Control in Finance: Numerical Methods and Viscosity Solutions
The goal of this thesis is to provide efficient and provably convergent
numerical methods for solving partial differential equations (PDEs) coming from
impulse control problems motivated by finance. Impulses, which are controlled
jumps in a stochastic process, are used to model realistic features in
financial problems which cannot be captured by ordinary stochastic controls.
The dynamic programming equations associated with impulse control problems
are Hamilton-Jacobi-Bellman quasi-variational inequalities (HJBQVIs) Other than
in certain special cases, the numerical schemes that come from the
discretization of HJBQVIs take the form of complicated nonlinear matrix
equations also known as Bellman problems. We prove that a policy iteration
algorithm can be used to compute their solutions. In order to do so, we employ
the theory of weakly chained diagonally dominant (w.c.d.d.) matrices. As a
byproduct of our analysis, we obtain some new results regarding a particular
family of Markov decision processes which can be thought of as impulse control
problems on a discrete state space and the relationship between w.c.d.d.
matrices and M-matrices. Since HJBQVIs are nonlocal PDEs, we are unable to
directly use the seminal result of Barles and Souganidis (concerning the
convergence of monotone, stable, and consistent numerical schemes to the
viscosity solution) to prove the convergence of our schemes. We address this
issue by extending the work of Barles and Souganidis to nonlocal PDEs in a
manner general enough to apply to HJBQVIs. We apply our schemes to compute the
solutions of various classical problems from finance concerning optimal control
of the exchange rate, optimal consumption with fixed and proportional
transaction costs, and guaranteed minimum withdrawal benefits in variable
annuities
Drivers of land-use changes in societies with decreasing populations: A comparison of the factors affecting farmland abandonment in a food production area in Japan
The extraordinary population growth of the 20th century will subside in the 21st century, followed by depopulation, constituting the first population decline phase in human history in Japan and other developed countries. The drivers of land-use change during the population decline phase are expected to differ from those of the population growth phase; however, research on land-use drivers during the decline phase is limited. Identifying these drivers is necessary to develop effective management plans for biodiversity and ecosystem services in the decline phase. First, we calculated the probability of farmland abandonment in Hokkaido, a Japanese food production area, from 1973-2009 and divided the period into the population growth phase (1978-1997) and the decline phase (1997-2009). We examined various geographical and social factors that were assumed to alter the land use during these two phases. Geographical and social conditions are key factors in determining the probability of farmland abandonment, but their influences varied between the two phases. The farmlands located on geographically uncultivable sites, such as marginal, underproductive, narrow, and steep land, were abandoned during these phases; however, social conditions, such as the distance from densely inhabited districts (DIDs) and the population, exerted opposite effects during these two phases. Farmland abandonment occurred near DIDs (i.e., urban areas) during the population growth phase, whereas farmland abandonment occurred far from DIDs and sparsely populated farmlands during the decline phase. Farmland abandonment was strongly affected by government policy during the population growth phase, but the policy weakened during the decline phase, which triggered farmland abandonment throughout Hokkaido. The geographical and social drivers found in the present study may provide new insights for other developed countries experiencing depopulation problems
lvgA, a Novel Legionella pneumophila Virulence Factor
Several novel Legionella pneumophila virulence genes were previously discovered by use of signature-tagged mutagenesis (P. H. Edelstein, M. A. Edelstein, F. Higa, and S. Falkow, Proc. Natl. Acad. Sci. 96:8190-8195, 1999). One of these mutants appeared to be defective in multiplication in guinea pig lungs and spleens, yet it multiplies normally in guinea pig alveolar macrophages. Here we report further characterization of the mutated gene and its protein and the virulence role of the gene. The complete sequence of the gene, now called lvgA, is 627 bp long, and its protein product is approximately 27 kDa in size. lvgA was present in all 50 strains of L. pneumophila tested. No significant nucleic acid or protein homology was found in the GenBank database for the gene, nor were any distinctive motifs discovered in a search of other databases. The expression of both DotA and IcmX in the lvgA mutant was normal. Subcellular fractionation studies localized LvgA to the outer membrane fraction, and protease digestion studies suggested that at least some of the protein is surface expressed. No change in bacterial lipopolysaccharide composition or reactivity to serogroup-specific antisera was detected in the mutant. Growth competition studies with alveolar macrophages showed that the mutant was outcompeted by its parent 3-fold in 24 h and 24-fold in 48 h, in contrast to what was observed with the null phenotype in parallel testing with alveolar macrophages or with the A549 alveolar epithelial cell line. This macrophage defect of the mutant bacterium was due to slower growth, as the mutant invaded alveolar macrophages normally. Electron microscopy showed that the mutant bacterium resided in a ribosome-studded phagosome in alveolar macrophages, with no distinction from its parent. The lvgA mutant was outcompeted by its parent about sixfold in guinea pig lungs and spleens; prolonged observation of infected animals showed no late-onset virulence of the mutant. Transcomplementation of the mutant restored the parental phenotype in guinea pigs. The lvgA mutant was twofold more susceptible to killing by human β-defensin 2 but not to killing by other cationic peptides, serum complement, or polymorphonuclear neutrophils. lvgA is a novel virulence gene that is responsible for pleiotropic functions involving both extracellular and intracellular bacterial resistance mechanisms
- …