3 research outputs found

    Super Rapid Crystal Growth and Quench of Monoclinic Bi-II* During Dynamic Compression

    Full text link
    We show that monoclinic Bi-II* forms during a dynamic compression regime with crystal growth rates from melt of ≈ 70 m/s. This extreme quench rate implies crystallization by non-diffusive processes and indicates that the liquid had a high degree of pre-ordering. Using ambient condition single crystal structure analysis we show for the first time that the monoclinic distorted phase of Bi (Bi-II) exists at ambient pressure, albeit bound to formation under dynamic compression. We review the pressure, temperature, and time conditions for formation and growth of this structure

    Post-aragonite phases of CaCO3_{3} at lower mantle pressures

    Get PDF
    The stability, structure and properties of carbonate minerals at lower mantle conditions has significant impact on our understanding of the global carbon cycle and the composition of the interior of the Earth. In recent years, there has been significant interest in the behavior of carbonates at lower mantle conditions, specifically in their carbon hybridization, which has relevance for the storage of carbon within the deep mantle. Using high-pressure synchrotron X-ray diffraction in a diamond anvil cell coupled with direct laser heating of CaCO3_{3} using a CO2_{2} laser, we identify a crystalline phase of the material above 40 GPa −- corresponding to a lower mantle depth of around 1,000 km −- which has first been predicted by \textit{ab initio} structure predictions. The observed sp2sp^{2} carbon hybridized species at 40 GPa is monoclinic with P21/cP2_{1}/c symmetry and is stable up to 50 GPa, above which it transforms into a structure which cannot be indexed by existing known phases. A combination of \textit{ab initio} random structure search (AIRSS) and quasi-harmonic approximation (QHA) calculations are used to re-explore the relative phase stabilities of the rich phase diagram of CaCO3_{3}. Nudged elastic band (NEB) calculations are used to investigate the reaction mechanisms between relevant crystal phases of CaCO3_{3} and we postulate that the mineral is capable of undergoing sp2sp^{2}-sp3sp^{3} hybridization change purely in the P21/cP2_{1}/c structure −- forgoing the accepted post-aragonite PmmnPmmn structure.Comment: 12 pages, 8 figure
    corecore