3 research outputs found

    A 15.7-minAM CVn binary discovered in K2

    Get PDF
    We present the discovery of SDSS J135154.46−064309.0, a short-period variable observed using 30-mincadence photometry in K2 Campaign 6. Follow-up spectroscopy and high-speed photometry support a classification as a new member of the rare class of ultracompact accreting binaries known as AM CVn stars. The spectroscopic orbital period of 15.65 ± 0.12 min makes this system the fourth-shortest-period AM CVn known, and the second system of this type to be discovered by the Kepler spacecraft. The K2 data show photometric periods at 15.7306 ± 0.0003 min, 16.1121 ± 0.0004 min, and 664.82 ± 0.06 min, which we identify as the orbital period, superhump period, and disc precession period, respectively. From the superhump and orbital periods we estimate the binary mass ratio q = M2/M1= 0.111 ± 0.005, though this method of mass ratio determination may not be well calibrated for helium-dominated binaries. This system is likely to be a bright foreground source of gravitational waves in the frequency range detectable by Laser Interferometer Space Antenna, and may be of use as a calibration source if future studies are able to constrain the masses of its stellar components

    Spectroscopic and photometric periods of six ultracompact accreting binaries

    Get PDF
    Ultracompact accreting binary systems each consist of a stellar remnant accreting helium-enriched material from a compact donor star. Such binaries include two related sub-classes, AM CVn-type binaries and helium cataclysmic variables, in both of which the central star is a white dwarf. We present a spectroscopic and photometric study of six accreting binaries with orbital periods in the range of 40--70 min, including phase-resolved VLT spectroscopy and high-speed ULTRACAM photometry. Four of these are AM CVn systems and two are helium cataclysmic variables. For four of these binaries we are able to identify orbital periods (of which three are spectroscopic). SDSS J1505+0659 has an orbital period of 67.8 min, significantly longer than previously believed, and longer than any other known AM CVn binary. We identify a WISE infrared excess in SDSS J1505+0659 that we believe to be the first direct detection of an AM CVn donor star in a non-direct impacting binary. The mass ratio of SDSS J1505+0659 is consistent with a white dwarf donor. CRTS J1028-0819 has an orbital period of 52.1 min, the shortest period of any helium cataclysmic variable. MOA 2010-BLG-087 is co-aligned with a K-class star that dominates its spectrum. ASASSN-14ei and ASASSN-14mv both show a remarkable number of echo outbursts following superoutbursts (13 and 10 echo outbursts respectively). ASASSN-14ei shows an increased outburst rate over the years following its superoutburst, perhaps resulting from an increased accretion rate

    Gaia white dwarfs within 40 pc I : spectroscopic observations of new candidates

    Get PDF
    We present a spectroscopic survey of 230 white dwarf candidates within 40 pc of the Sun from the William Herschel Telescope and Gran Telescopio Canarias. All candidates were selected from Gaia Data Release 2 (DR2) and in almost all cases had no prior spectroscopic classifications. We find a total of 191 confirmed white dwarfs and 39 main-sequence star contaminants. The majority of stellar remnants in the sample are relatively cool (〈Teff〉 = 6200 K), showing either hydrogen Balmer lines or a featureless spectrum, corresponding to 89 DA and 76 DC white dwarfs, respectively. We also recover two DBA white dwarfs and 9–10 magnetic remnants. We find two carbon-bearing DQ stars and 14 new metal-rich white dwarfs. This includes the possible detection of the first ultra-cool white dwarf with metal lines. We describe three DZ stars for which we find at least four different metal species, including one which is strongly Fe- and Ni-rich, indicative of the accretion of a planetesimal with core-Earth composition. We find one extremely massive (1.31 ± 0.01 M⊙) DA white dwarf showing weak Balmer lines, possibly indicating stellar magnetism. Another white dwarf shows strong Balmer line emission but no infrared excess, suggesting a low-mass sub-stellar companion. High spectroscopic completeness (>99%) has now been reached for Gaia DR2 sources within 40 pc sample, in the northern hemisphere (ÎŽ > 0 deg) and located on the white dwarf cooling track in the Hertzsprung-Russell diagram. A statistical study of the full northern sample is presented in a companion paper
    corecore