67 research outputs found
Aintegumenta and Aintegumenta-Like6 regulate auxin-mediated flower development in Arabidopsis
<p>Abstract</p> <p>Background</p> <p>Two related genes encoding AP2/ERF-type transcription factors, <it>AINTEGUMENTA </it>(<it>ANT</it>) and <it>AINTEGUMENTA-LIKE6 </it>(<it>AIL6</it>), are important regulators of floral growth and patterning in Arabidopsis. Evidence suggests that these genes promote several aspects of flower development in response to auxin. To investigate the interplay of <it>ANT</it>, <it>AIL6 </it>and auxin during floral development, I have examined the phenotypic consequences of disrupting polar auxin transport in <it>ant</it>, <it>ail6 </it>and <it>ant ail6 </it>mutants by either genetic or chemical means.</p> <p>Results</p> <p>Plants containing mutations in <it>ANT </it>or <it>AIL6 </it>alone or in both genes together exhibit increased sensitivity to disruptions in polar auxin transport. Both genes promote shoot growth, floral meristem initiation and floral meristem patterning in combination with auxin transport. However, differences in the responses of <it>ant </it>and <it>ail6 </it>single mutants to perturbations in auxin transport suggest that these two genes also have non-overlapping activities in each of these developmental processes.</p> <p>Conclusions</p> <p>The enhanced sensitivity of <it>ant </it>and <it>ail6 </it>mutants to alterations in polar auxin transport suggests that these mutants have defects in some aspect of auxin physiology. The inability of <it>ant ail6 </it>double mutants to initiate flowers in backgrounds disrupted for auxin transport confirm the proposed roles for these two genes in floral meristem initiation.</p
Non-Hfe iron overload: Is Phlebotomy the answer?
Iron is an essential factor for life, however a physiologically optimal balance is critical. In this article we explore the role of iron as a co-factor in a range of chronic liver diseases and how it may contribute to the development of liver injury, fibrosis, cirrhosis and ultimately hepatocellular carcinoma. Whilst iron depletion therapy through phlebotomy is the most effective method of reducing iron stores, it is unclear whether this offers utility in the therapy of liver diseases in which iron is not the primary insult resulting in tissue injury. Here we examine the emerging evidence in the field of non-HFE hereditary haemochromatosis conditions associated with iron overload – is phlebotomy the answer
- …