1,657 research outputs found

    Small centrifugal pumps for low-thrust rocket engines

    Get PDF
    Six small, low specific speed centrifugal pump configurations were designed, fabricated, and tested. The configurations included shrouded, and 25 and 100% admission open face impellers with 2 inch tip diameters; 25, 50, and 100% emission vaned diffusers; and volutes with conical exits. Impeller tip widths varied from 0.030 inch to 0.052 inch. Design specific speeds (N sub s = RPM*GPM**0.5.FT**0.75) were 430 (four configurations) and 215 (two configurations). The six configurations were tested with water as the pumped fluid. Noncavitating performance results are presented for the design speed of 24,500 rpm over a flowrate range from 1 to 6 gpm for the N sub s = 430 configurations and test speeds up to 29,000 rpm over a flowrate range from 0.3 to 1.2 gpm for the N sub s = 215 configurations. Cavitating performance results are presented over a flowrate range from 60 to 120% of design flow. Fabrication of the small pump conponents is also discussed

    High resolution radio imaging of the two Particle-Accelerating Colliding-Wind Binaries HD167971 and HD168112

    Full text link
    The colliding-wind region in binary systems made of massive stars allows us to investigate various aspects of shock physics, including particle acceleration. Particle accelerators of this kind are tagged as Particle-Accelerating Colliding-Wind Binaries, and are mainly identified thanks to their synchrotron radio emission. Our objective is first to validate the idea that obtaining snapshot high-resolution radio images of massive binaries constitutes a relevant approach to unambiguously identify particle accelerators. Second, we intend to exploit these images to characterize the synchrotron emission of two specific targets, HD167971 and HD168112, known as particle accelerators. We traced the radio emission from the two targets at 1.6 GHz with the European Very Long Baseline Interferometry Network, with an angular resolution of a few milli-arcseconds. Our measurements allowed us to obtain images for both targets. For HD167971, our observation occurs close to apastron, at an orbital phase where the synchrotron emission is minimum. For HD168112, we resolved for the very first time the synchrotron emission region. The emission region appears slightly elongated, in agreement with expectation for a colliding-wind region. In both cases the measured emission is significantly stronger than the expected thermal emission from the stellar winds, lending strong support for a non-thermal nature. Our study brings a significant contribution to the still poorly addressed question of high angular resolution radio imaging of colliding-wind binaries. We show that snapshot Very Long Baseline Interferometry measurements constitute an efficient approach to investigate these objects, with promising results in terms of identification of additional particle accelerators, on top of being promising as well to reveal long period binaries.Comment: 8 pages, 1 figure, accepted for publication in A&

    G328.4+0.2 : A large and luminous Crab-like supernova remnant

    Get PDF
    We report on radio continuum and HI observations of the radio source G328.4+0.2 using the Australia Telescope Compact Array. Our results confirm G328.4+0.2 to be a filled-center nebula with no surrounding shell, showing significant linear polarization and an almost flat spectral index. These results lead us to conclude that G328.4+0.2 is a Crab-like, or ``plerionic'', supernova remnant (SNR), presumably powered by an unseen central pulsar. HI absorption towards G328.4+0.2 puts a lower limit on its distance of 17.4 +/- 0.9 kpc, making it the largest (D=25 pc) and most luminous (L_R = 3e35 erg/s) Crab-like SNR in the Galaxy. We infer G328.4+0.2 to be significantly older than the Crab Nebula, but powered by a pulsar which is fast spinning (P<20 ms) and which has a comparatively low magnetic field (B<1e12 G). We propose G328.4+0.2, G74.9+1.2 and N157B as a distinct group of large-diameter, high-luminosity Crab-like SNRs, all powered by fast-spinning low-field pulsars.Comment: 7 pages, 3 embedded EPS figures, uses emulateapj.sty. Accepted to ApJ. Abstract corrected so that distance is now in kpc, not pc

    Faint HI 21-cm Emission Line Wings at Forbidden-Velocities

    Full text link
    We present the results of a search for faint HI 21-cm emission line wings at velocities forbidden by Galactic rotation in the Galactic plane using the Leiden/Dwingeloo HI Survey data and the HI Southern Galactic Plane Survey data. These ``forbidden-velocity wings (FVWs)'' appear as protruding excessive emission in comparison with their surroundings in limited (< 2 deg) spatial regions over velocity extent more than ~20 km/s in large-scale (l-v) diagrams. Their high-velocities imply that there should be some dynamical phenomena associated. We have identified 87 FVWs. We present their catalog, and discuss their distribution and statistical properties. We found that 85% of FVWs are not coincident with known supernova remnants (SNRs), galaxies, or high-velocity clouds. Their natures are currently unknown. We suspect that many of them are fast-moving HI shells and filaments associated with the oldest SNRs that are essentially invisible except via their HI line emission. We discuss other possible origins.Comment: 41 pages, 14 figures, to be published in apj

    Label-free electrochemical detection of human methyltransferase from tumors

    Get PDF
    The role of abnormal DNA methyltransferase activity in the development and progression of cancer is an essential and rapidly growing area of research, both for improved diagnosis and treatment. However, current technologies for the assessment of methyltransferase activity, particularly from crude tumor samples, limit this work because they rely on radioactivity or fluorescence and require bulky instrumentation. Here, we report an electrochemical platform that overcomes these limitations for the label-free detection of human DNA(cytosine-5)-methyltransferase1 (DNMT1) methyltransferase activity, enabling measurements from crude cultured colorectal cancer cell lysates (HCT116) and biopsied tumor tissues. Our multiplexed detection system involving patterning and detection from a secondary electrode array combines low-density DNA monolayer patterning and electrocatalytically amplified DNA charge transport chemistry to measure selectively and sensitively DNMT1 activity within these complex and congested cellular samples. Based on differences in DNMT1 activity measured with this assay, we distinguish colorectal tumor tissue from healthy adjacent tissue, illustrating the effectiveness of this two-electrode platform for clinical applications

    Fundamental Cycles and Graph Embeddings

    Full text link
    In this paper we present a new Good Characterization of maximum genus of a graph which makes a common generalization of the works of Xuong, Liu, and Fu et al. Based on this, we find a new polynomially bounded algorithm to find the maximum genus of a graph

    On the Enhanced Interstellar Scattering Toward B1849+005

    Full text link
    (Abridged) This paper reports new Very Large Array (VLA) and Very Long Baseline Array (VLBA) observations of the extragalactic source B1849+005 at frequencies between 0.33 and 15 GHz and the re-analysis of archival VLA observations at 0.33, 1.5, and 4.9 GHz. The structure of this source is complex but interstellar scattering dominates the structure of the central component at least to 15 GHz. An analysis of the phase structure functions of the interferometric visibilities shows the density fluctuations along this line of sight to be anisotropic (axial ratio = 1.3) with a frequency-independent position angle, and having an inner scale of roughly a few hundred kilometers. The anisotropies occur on length scales of order 10^{15} cm (D/5 kpc), which within the context of certain magnetohydrodynamic turbulence theories indicates the length scale on which the kinetic and magnetic energy densities are comparable. A conservative upper limit on the velocity of the scattering material is 1800 km/s. In the 0.33 GHz field of view, there are a number of other sources that might also be heavily scattered. Both B1849+005 and PSR B1849+00 are highly scattered, and they are separated by only 13'. If the lines of sight are affected by the same ``clump'' of scattering material, it must be at least 2.3 kpc distant. However, a detailed attempt to account for the scattering observables toward these sources does not produce a self-consistent set of parameters for such a clump. A clump of H\alpha emission, possibly associated with the H II region G33.418-0.004, lies between these two lines of sight, but it seems unable to account for all of the required excess scattering.Comment: 23 pages, LaTeX2e AASTeX, 13 figures in 14 PostScript files, accepted for publication in Ap

    G55.0+0.3: A Highly Evolved Supernova Remnant

    Full text link
    Multi-frequency analysis has revealed the presence of a new supernova remnant, G55.0+0.3, in the Galactic plane. A kinematic distance of 14 kpc has been measured from HI spectral line data. The faint, clumpy half-shell is non-thermal and has a physical radius of 70 pc. Using an evolutionary model, the age of the remnant is estimated to be on the order of one million years, which exceeds conventional limits by a factor of five. The remnant may be associated with the nearby pulsar J1932+2020, which has a spin-down age of 1.1 million years. This work implies that the radiative lifetimes of remnants could be much longer than previously suggested.Comment: 27 pages, 7 figures in 9 files (figures 1 and 2 require 2 files each), Accepted for publication in The Astrophysical Journal (Jan. 20, 1998 volume

    Longitudinal attenuation in political polarization: evidence from COVID-19 vaccination adherence in Brazil

    Get PDF
    Background: While political polarization in policy opinions, preferences, and observance is well established, little is known about whether and how such divisions evolve, and possibly attenuate, over time. Using the COVID-19 pandemic in Brazil as the backdrop, we examine the longitudinal evolution of a highly relevant and polarizing policy: adherence to the COVID-19 vaccination. Methods: Studies 1 (N = 3346) and 2 (N = 10,214) use nationwide surveys to document initial differences and subsequent changes in vaccination adherence between conservatives ("Bolsonaristas") and non-conservatives ("non-Bolsonaristas"). Study 3 (N = 742) uses an original dataset to investigate belief changes among conservatives and their association with asymmetric changes in vaccination adherence. Results: Despite substantial differences at the early stages of rollout, the gap in vaccination adherence between conservatives and non-conservatives significantly decreased with the passage of time, driven essentially by a much faster uptake among the initially most skeptic—the conservatives. Study 3 demonstrates that the asymmetric changes in vaccination adherence were associated with meaningful belief changes among the conservatives, especially about the perceived effectiveness of the COVID-19 vaccines and the expected adherence of peers to the vaccination campaign. Conclusions: Together, these studies show that, in a context where the superiority of the promoted policy becomes clear over time and individuals have the opportunity to revisit prior beliefs, even intense political polarization can be attenuated
    corecore