207 research outputs found

    Nuclear expression of FLT1 and its ligand PGF in FUS-DDIT3 carrying myxoid liposarcomas suggests the existence of an intracrine signaling loop

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The FUS-DDIT3 fusion oncogene encodes an abnormal transcription factor that has a causative role in the development of myxoid/round-cell liposarcomas (MLS/RCLS). We have previously identified <it>FLT1 </it>(<it>VEGFR1</it>) as a candidate downstream target gene of FUS-DDIT3. The aim of this study was to investigate expression of FLT1 and its ligands in MLS cells.</p> <p>Methods</p> <p>HT1080 human fibrosarcoma cells were transiently transfected with <it>FUS-DDIT3</it>-GFP variant constructs and FLT1 expression was measured by quantitative real-time PCR. In addition, <it>FLT1</it>, <it>PGF, VEGFA and VEGFB </it>expression was measured in MLS/RCLS cell lines, MLS/RCLS tumors and in normal adiopocytes. We analyzed nine cases of MLS/RCLS and one cell line xenografted in mice for FLT1 protein expression using immunohistochemistry. MLS/RCLS cell lines were also analyzed for FLT1 by immunofluorescence and western blot. MLS/RCLS cell lines were additionally treated with FLT1 tyrosine kinase inhibitors and assayed for alterations in proliferation rate.</p> <p>Results</p> <p><it>FLT1 </it>expression was dramatically increased in transfected cells stably expressing FUS-DDIT3 and present at high levels in cell lines derived from MLS. The FLT1 protein showed a strong nuclear expression in cells of MLS tissue as well as in cultured MLS cells, which was confirmed by cellular fractionation. Tissue array analysis showed a nuclear expression of the FLT1 protein also in several other tumor and normal cell types including normal adipocytes. The FLT1 ligand coding gene <it>PGF </it>was highly expressed in cultured MLS cells compared to normal adipocytes while the other ligand genes <it>VEGFA </it>and <it>VEGFB </it>were expressed to lower levels. A more heterogeneous expression pattern of these genes were observed in tumor samples. No changes in proliferation rate of MLS cells were detected at concentrations for which the kinase inhibitors have shown specific inhibition of FLT1.</p> <p>Conclusions</p> <p>Our results imply that <it>FLT1 </it>is induced as an indirect downstream effect of FUS-DDIT3 expression in MLS. This could be a consequence of the ability of FUS-DDIT3 to hijack parts of normal adipose tissue development and reprogram primary cells to a liposarcoma-like phenotype. The findings of nuclear FLT1 protein and expression of corresponding ligands in MLS and normal tissues may have implications for tissue homeostasis and tumor development through auto- or intracrine signaling.</p

    Peptide and Peptide-Like Modulators of 20S Proteasome Enzymatic Activity in Cancer Cells

    Get PDF
    The involvement of the ubiquitin–proteasome pathway in the degradation of critical intracellular regulatory proteins suggested a few years ago the potential use of proteasome inhibitors as novel therapeutic agents being applicable in many different disease indications, and in particular for cancer therapy. This article reviews recent salient medicinal chemistry achievements in the design, synthesis, and biological characterization of both synthetic and natural peptide-like proteasome inhibitors, updating recent reviews on this class of agents. As shown herein, different compound classes are capable of modulating the subunit-specific proteolytic activities of the 20S proteasome in ways not previously possible, and one of them, bortezomib, has provided proof-of-concept for this therapeutic approach in cancer clinical settings

    HCV Induces Oxidative and ER Stress, and Sensitizes Infected Cells to Apoptosis in SCID/Alb-uPA Mice

    Get PDF
    Hepatitis C virus (HCV) is a blood-borne pathogen and a major cause of liver disease worldwide. Gene expression profiling was used to characterize the transcriptional response to HCV H77c infection. Evidence is presented for activation of innate antiviral signaling pathways as well as induction of lipid metabolism genes, which may contribute to oxidative stress. We also found that infection of chimeric SCID/Alb-uPA mice by HCV led to signs of hepatocyte damage and apoptosis, which in patients plays a role in activation of stellate cells, recruitment of macrophages, and the subsequent development of fibrosis. Infection of chimeric mice with HCV H77c also led an inflammatory response characterized by infiltration of monocytes and macrophages. There was increased apoptosis in HCV-infected human hepatocytes in H77c-infected mice but not in mice inoculated with a replication incompetent H77c mutant. Moreover, TUNEL reactivity was restricted to HCV-infected hepatocytes, but an increase in FAS expression was not. To gain insight into the factors contributing specific apoptosis of HCV infected cells, immunohistological and confocal microscopy using antibodies for key apoptotic mediators was done. We found that the ER chaperone BiP/GRP78 was increased in HCV-infected cells as was activated BAX, but the activator of ER stress–mediated apoptosis CHOP was not. We found that overall levels of NF-κB and BCL-xL were increased by infection; however, within an infected liver, comparison of infected cells to uninfected cells indicated both NF-κB and BCL-xL were decreased in HCV-infected cells. We conclude that HCV contributes to hepatocyte damage and apoptosis by inducing stress and pro-apoptotic BAX while preventing the induction of anti-apoptotic NF-κB and BCL-xL, thus sensitizing hepatocytes to apoptosis

    Persistent Expression of Hepatitis C Virus Non-Structural Proteins Leads to Increased Autophagy and Mitochondrial Injury in Human Hepatoma Cells

    Get PDF
    HCV infection is a major cause of chronic liver disease and liver cancer in the United States. To address the pathogenesis caused by HCV infection, recent studies have focused on the direct cytopathic effects of individual HCV proteins, with the objective of identifying their specific roles in the overall pathogenesis. However, this approach precludes examination of the possible interactions between different HCV proteins and organelles. To obtain a better understanding of the various cytopathic effects of and cellular responses to HCV proteins, we used human hepatoma cells constitutively replicating HCV RNA encoding either the full-length polyprotein or the non-structural proteins, or cells constitutively expressing the structural protein core, to model the state of persistent HCV infection and examined the combination of various HCV proteins in cellular pathogenesis. Increased reactive oxygen species (ROS) generation in the mitochondria, mitochondrial injury and degeneration, and increased lipid accumulation were common among all HCV protein-expressing cells regardless of whether they expressed the structural or non-structural proteins. Expression of the non-structural proteins also led to increased oxidative stress in the cytosol, membrane blebbing in the endoplasmic reticulum, and accumulation of autophagocytic vacuoles. Alterations of cellular redox state, on the other hand, significantly changed the level of autophagy, suggesting a direct link between oxidative stress and HCV-mediated activation of autophagy. With the wide-spread cytopathic effects, cells with the full-length HCV polyprotein showed a modest antioxidant response and exhibited a significant increase in population doubling time and a concomitant decrease in cyclin D1. In contrast, cells expressing the non-structural proteins were able to launch a vigorous antioxidant response with up-regulation of antioxidant enzymes. The population doubling time and cyclin D1 level were also comparable to that of control cells. Finally, the cytopathic effects of core protein appeared to focus on the mitochondria without remarkable disturbances in the cytosol

    Let’s not forget tautomers

    Get PDF
    A compound exhibits tautomerism if it can be represented by two structures that are related by an intramolecular movement of hydrogen from one atom to another. The different tautomers of a molecule usually have different molecular fingerprints, hydrophobicities and pKa’s as well as different 3D shape and electrostatic properties; additionally, proteins frequently preferentially bind a tautomer that is present in low abundance in water. As a result, the proper treatment of molecules that can tautomerize, ~25% of a database, is a challenge for every aspect of computer-aided molecular design. Library design that focuses on molecular similarity or diversity might inadvertently include similar molecules that happen to be encoded as different tautomers. Physical property measurements might not establish the properties of individual tautomers with the result that algorithms based on these measurements may be less accurate for molecules that can tautomerize—this problem influences the accuracy of filtering for library design and also traditional QSAR. Any 2D or 3D QSAR analysis must involve the decision of if or how to adjust the observed Ki or IC50 for the tautomerization equilibria. QSARs and recursive partitioning methods also involve the decision as to which tautomer(s) to use to calculate the molecular descriptors. Docking virtual screening must involve the decision as to which tautomers to include in the docking and how to account for tautomerization in the scoring. All of these decisions are more difficult because there is no extensive database of measured tautomeric ratios in both water and non-aqueous solvents and there is no consensus as to the best computational method to calculate tautomeric ratios in different environments

    The small molecule specific EphB4 kinase inhibitor NVP-BHG712 inhibits VEGF driven angiogenesis

    Get PDF
    EphB4 and its cognitive ligand ephrinB2 play an important role in embryonic vessel development and vascular remodeling. In addition, several reports suggest that this receptor ligand pair is also involved in pathologic vessel formation in adults including tumor angiogenesis. Eph/ephrin signaling is a complex phenomena characterized by receptor forward signaling through the tyrosine kinase of the receptor and ephrin reverse signaling through various protein–protein interaction domains and phosphorylation motifs of the ephrin ligands. Therefore, interfering with EphR/ephrin signaling by the means of targeted gene ablation, soluble receptors, dominant negative mutants or antisense molecules often does not allow to discriminate between inhibition of Eph/ephrin forward and reverse signaling. We developed a specific small molecular weight kinase inhibitor of the EphB4 kinase, NVP-BHG712, which inhibits EphB4 kinase activity in the low nanomolar range in cellular assays showed high selectivity for targeting the EphB4 kinase when profiled against other kinases in biochemical as well as in cell based assays. Furthermore, NVP-BHG712 shows excellent pharmacokinetic properties and potently inhibits EphB4 autophosphorylation in tissues after oral administration. In vivo, NVP-BHG712 inhibits VEGF driven vessel formation, while it has only little effects on VEGF receptor (VEGFR) activity in vitro or in cellular assays. The data shown here suggest a close cross talk between the VEGFR and EphR signaling during vessel formation. In addition to its established function in vascular remodeling and endothelial arterio-venous differentiation, EphB4 forward signaling appears to be an important mediator of VEGF induced angiogenesis since inhibition of EphB4 forward signaling is sufficient to inhibit VEGF induced angiogenesis

    Gut microbiota and sirtuins in obesity-related inflammation and bowel dysfunction

    Get PDF
    Obesity is a chronic disease characterized by persistent low-grade inflammation with alterations in gut motility. Motor abnormalities suggest that obesity has effects on the enteric nervous system (ENS), which controls virtually all gut functions. Recent studies have revealed that the gut microbiota can affect obesity and increase inflammatory tone by modulating mucosal barrier function. Furthermore, the observation that inflammatory conditions influence the excitability of enteric neurons may add to the gut dysfunction in obesity. In this article, we discuss recent advances in understanding the role of gut microbiota and inflammation in the pathogenesis of obesity and obesity-related gastrointestinal dysfunction. The potential contribution of sirtuins in protecting or regulating the circuitry of the ENS under inflamed states is also considered

    HCV Causes Chronic Endoplasmic Reticulum Stress Leading to Adaptation and Interference with the Unfolded Protein Response

    Get PDF
    BACKGROUND: The endoplasmic reticulum (ER) is the cellular site for protein folding. ER stress occurs when protein folding capacity is exceeded. This stress induces a cyto-protective signaling cascades termed the unfolded protein response (UPR) aimed at restoring homeostasis. While acute ER stress is lethal, chronic sub-lethal ER stress causes cells to adapt by attenuation of UPR activation. Hepatitis C virus (HCV), a major human pathogen, was shown to cause ER stress, however it is unclear whether HCV induces chronic ER stress, and if so whether adaptation mechanisms are initiated. We wanted to characterize the kinetics of HCV-induced ER stress during infection and assess adaptation mechanisms and their significance. METHODS AND FINDINGS: The HuH7.5.1 cellular system and HCV-transgenic (HCV-Tg) mice were used to characterize HCV-induced ER stress/UPR pathway activation and adaptation. HCV induced a wave of acute ER stress peaking 2-5 days post-infection, which rapidly subsided thereafter. UPR pathways were activated including IRE1 and EIF2α phosphorylation, ATF6 cleavage and XBP-1 splicing. Downstream target genes including GADD34, ERdj4, p58ipk, ATF3 and ATF4 were upregulated. CHOP, a UPR regulated protein was activated and translocated to the nucleus. Remarkably, UPR activity did not return to baseline but remained elevated for up to 14 days post infection suggesting that chronic ER stress is induced. At this time, cells adapted to ER stress and were less responsive to further drug-induced ER stress. Similar results were obtained in HCV-Tg mice. Suppression of HCV by Interferon-α 2a treatment, restored UPR responsiveness to ER stress tolerant cells. CONCLUSIONS: Our study shows, for the first time, that HCV induces adaptation to chronic ER stress which was reversed upon viral suppression. These finding represent a novel viral mechanism to manipulate cellular response pathways

    Gut microbiota and diabetes: from pathogenesis to therapeutic perspective

    Get PDF
    More than several hundreds of millions of people will be diabetic and obese over the next decades in front of which the actual therapeutic approaches aim at treating the consequences rather than causes of the impaired metabolism. This strategy is not efficient and new paradigms should be found. The wide analysis of the genome cannot predict or explain more than 10–20% of the disease, whereas changes in feeding and social behavior have certainly a major impact. However, the molecular mechanisms linking environmental factors and genetic susceptibility were so far not envisioned until the recent discovery of a hidden source of genomic diversity, i.e., the metagenome. More than 3 million genes from several hundreds of species constitute our intestinal microbiome. First key experiments have demonstrated that this biome can by itself transfer metabolic disease. The mechanisms are unknown but could be involved in the modulation of energy harvesting capacity by the host as well as the low-grade inflammation and the corresponding immune response on adipose tissue plasticity, hepatic steatosis, insulin resistance and even the secondary cardiovascular events. Secreted bacterial factors reach the circulating blood, and even full bacteria from intestinal microbiota can reach tissues where inflammation is triggered. The last 5 years have demonstrated that intestinal microbiota, at its molecular level, is a causal factor early in the development of the diseases. Nonetheless, much more need to be uncovered in order to identify first, new predictive biomarkers so that preventive strategies based on pre- and probiotics, and second, new therapeutic strategies against the cause rather than the consequence of hyperglycemia and body weight gain
    corecore