1,255 research outputs found
Interface trap generation by FN injection under dynamic oxide field stress
Interface trap generation under dynamic (bipolar and unipolar) and dc oxide field stress has been investigated with the charge pumping technique. It is observed that regardless of stress type, whether dc or dynamic (bipolar or unipolar), and the polarity of stress voltage, interface trap generation starts to occur at the voltage at which Fowler-Nordheim (FN) tunneling through the oxide starts to build up. For positive voltage, interface trap generation is attributed to the recombination of trapped holes with electrons and to the bond breaking by the hydrogen (H and H+) released during stressing. For negative voltage, in addition to these two mechanisms, the bond breaking by energetic electrons may also contribute to interface trap generation. The frequency dependence of interface trap generation is also investigated. Interface trap generation is independent of stressing frequency for unipolar stress but it shows a frequency dependence for bipolar stress. ©1998 IEEE.published_or_final_versio
Reproducibility of transmission line measurement of bipolar I-V characteristics of MOSFET's
Reproducibility of transmission line (TL) measurement of bipolar current-voltage (I-V) characteristics of grounded gate MOSFET's has been examined. It is observed that the reproducibility is related to the duration of the pulses generated by the transmission line, and a longer pulse duration gives a better reproducibility. For a short pulse duration, it is more difficult to reproduce the I-V characteristics in the triggering region than in other regions (i.e., the pretriggering and snapback regions).published_or_final_versio
Post-stress interface trap generation induced by oxide-field stress with FN injection
Interface trap generation in nMOS transistors during both stressing and post-stress periods under the conditions of oxide field (dynamic and dc) stress with FN injection is investigated with charge pumping technique. In contrast to the post-stress interface trap generation induced by hot carrier stress which is a logarithmical function of post-stress time, the poststress interface trap generation induced by oxide-field stress with FN injection first increases with post-stress time but then becomes saturated. The mechanisms for the interface trap generation in both stressing and post-stress periods are described. © 1998 IEEE.published_or_final_versio
Security proof of a three-state quantum key distribution protocol without rotational symmetry
Standard security proofs of quantum key distribution (QKD) protocols often
rely on symmetry arguments. In this paper, we prove the security of a
three-state protocol that does not possess rotational symmetry. The three-state
QKD protocol we consider involves three qubit states, where the first two
states, |0_z> and |1_z>, can contribute to key generation and the third state,
|+>=(|0_z>+|1_z>)/\sqrt{2}, is for channel estimation. This protocol has been
proposed and implemented experimentally in some frequency-based QKD systems
where the three states can be prepared easily. Thus, by founding on the
security of this three-state protocol, we prove that these QKD schemes are, in
fact, unconditionally secure against any attacks allowed by quantum mechanics.
The main task in our proof is to upper bound the phase error rate of the qubits
given the bit error rates observed. Unconditional security can then be proved
not only for the ideal case of a single-photon source and perfect detectors,
but also for the realistic case of a phase-randomized weak coherent light
source and imperfect threshold detectors. Our result on the phase error rate
upper bound is independent of the loss in the channel. Also, we compare the
three-state protocol with the BB84 protocol. For the single-photon source case,
our result proves that the BB84 protocol strictly tolerates a higher quantum
bit error rate than the three-state protocol; while for the coherent-source
case, the BB84 protocol achieves a higher key generation rate and secure
distance than the three-state protocol when a decoy-state method is used.Comment: 10 pages, 3 figures, 2 column
The associations of body mass index with physical and mental aspects of health-related quality of life in Chinese patients with type 2 diabetes mellitus: Results from a cross-sectional survey
Background: This study aimed to determine the associations of various clinical factors with generic health-related quality of life (HRQOL) scores among Hong Kong Chinese patients with type 2 diabetes mellitus (T2DM) in the outpatient primary care setting using the short-form 12 (SF-12).Methods: A cross-sectional survey of 488 Chinese adults with T2DM recruited from a primary care outpatient clinic was conducted from May to August 2008. Data on the standard Chinese (HK) SF-12 Health Survey and patients' socio-demographics were collected from face-to-face interviews. Glycaemic control, body mass index (BMI), chronic co-morbidities, diabetic complications and treatment modalities were determined for each patient through medical records. Associations of socio-demographic and clinical factors with physical component summary (PCS-12) and mental component summary scores (MCS-12) were evaluated using multiple linear regression.Results: The socio-demographic correlates of PCS-12 and MCS-12 were age, gender and BMI. After adjustment for socio-demographic variables, the BMI was negatively associated with PCS-12 but positively associated with MCS-12. The presence of diabetic complications was associated with lower PCS-12 (regression coefficient:-3.0 points, p < 0.05) while being on insulin treatment was associated with lower MCS-12 (regression coefficient:-5.8 points, p < 0.05). In contrast, glycaemic control, duration of T2DM and treatment with oral hypoglycaemic drugs were not significantly associated with PCS-12 or MCS-12.Conclusions: Among T2DM subjects in the primary care setting, impairments in the physical aspect of HRQOL were evident in subjects who were obese or had diabetic complications whereas defects in the mental aspect of HRQOL were observed in patients with lower BMI or receiving insulin injections. © 2013 Wong et al.; licensee BioMed Central Ltd.published_or_final_versio
Larkin-Ovchinnikov-Fulde-Ferrell phase in the superconductor (TMTSF)2ClO4: Theory versus experiment
We consider a formation of the Larkin-Ovchinnikov-Fulde-Ferrell (LOFF) phase
in a quasi-one-dimensional (Q1D) conductor in a magnetic field, parallel to its
conducting chains, where we take into account both the paramagnetic
spin-splitting and orbital destructive effects against superconductivity. We
show that, due to a relative weakness of the orbital effects in a Q1D case, the
LOFF phase appears in (TMTSF)ClO superconductor for real values of its
Q1D band parameters. We compare our theoretical calculations with the recent
experimental data by Y. Maeno's group [S. Yonezawa et al., Phys. Rev. Lett.
\textbf{100}, 117002 (2008)] and show that there is a good qualitative and
quantitative agreement between the theory and experimental data.Comment: 4 pages, 1 figur
Implementation of two-party protocols in the noisy-storage model
The noisy-storage model allows the implementation of secure two-party
protocols under the sole assumption that no large-scale reliable quantum
storage is available to the cheating party. No quantum storage is thereby
required for the honest parties. Examples of such protocols include bit
commitment, oblivious transfer and secure identification. Here, we provide a
guideline for the practical implementation of such protocols. In particular, we
analyze security in a practical setting where the honest parties themselves are
unable to perform perfect operations and need to deal with practical problems
such as errors during transmission and detector inefficiencies. We provide
explicit security parameters for two different experimental setups using weak
coherent, and parametric down conversion sources. In addition, we analyze a
modification of the protocols based on decoy states.Comment: 41 pages, 33 figures, this is a companion paper to arXiv:0906.1030
considering practical aspects, v2: published version, title changed in
accordance with PRA guideline
Experimental demonstration of phase-remapping attack in a practical quantum key distribution system
Unconditional security proofs of various quantum key distribution (QKD)
protocols are built on idealized assumptions. One key assumption is: the sender
(Alice) can prepare the required quantum states without errors. However, such
an assumption may be violated in a practical QKD system. In this paper, we
experimentally demonstrate a technically feasible "intercept-and-resend" attack
that exploits such a security loophole in a commercial "plug & play" QKD
system. The resulting quantum bit error rate is 19.7%, which is below the
proven secure bound of 20.0% for the BB84 protocol. The attack we utilize is
the phase-remapping attack (C.-H. F. Fung, et al., Phys. Rev. A, 75, 32314,
2007) proposed by our group.Comment: 16 pages, 6 figure
Coupling biochemistry and mechanics in cell adhesion: a model for inhomogeneous stress fiber contraction
Biochemistry and mechanics are closely coupled in cell adhesion. At sites of
cell-matrix adhesion, mechanical force triggers signaling through the
Rho-pathway, which leads to structural reinforcement and increased
contractility in the actin cytoskeleton. The resulting force acts back to the
sites of adhesion, resulting in a positive feedback loop for mature adhesion.
Here we model this biochemical-mechanical feedback loop for the special case
when the actin cytoskeleton is organized in stress fibers, which are
contractile bundles of actin filaments. Activation of myosin II molecular
motors through the Rho-pathway is described by a system of reaction-diffusion
equations, which are coupled into a viscoelastic model for a contractile actin
bundle. We find strong spatial gradients in the activation of contractility and
in the corresponding deformation pattern of the stress fiber, in good agreement
with experimental findings.Comment: Revtex, 35 pages, 13 Postscript figures included, in press with New
Journal of Physics, Special Issue on The Physics of the Cytoskeleto
Mapping the unique and shared functions of oncogenic KRAS and RIT1 with proteome and transcriptome profiling
Aberrant activation of RAS oncogenes is prevalent in lung adenocarcinoma, with somatic mutation of KRAS occurring in ∼30% of tumors. Recently, we identified somatic mutation of the RAS-family GTPase RIT1 in lung adenocarcinoma, but relatively little is known about the biological pathways regulated by RIT1 and how these relate to the oncogenic KRAS network. Here we present quantitative proteomic and transcriptomic profiles from KRAS-mutant and RIT1-mutant isogenic lung epithelial cells and globally characterize the signaling networks regulated by each oncogene. We find that both mutant KRAS and mutant RIT1 promote S6 kinase, AKT, and RAF/MEK signaling, and promote epithelial-to-mesenchymal transition and immune evasion via HLA protein loss. However, KRAS and RIT1 diverge in regulation of phosphorylation sites on EGFR, USO1, and AHNAK proteins. The majority of the proteome changes are related to altered transcriptional regulation, but a small subset of proteins are differentially regulated by both oncoproteins at the post-transcriptional level, including intermediate filament proteins, metallothioneins, and MHC Class I proteins. These data provide the first global, unbiased characterization of oncogenic RIT1 network and identify the shared and divergent functions of oncogenic RIT1 and KRAS GTPases in lung cancer
- …