280 research outputs found

    Redox homeostasis: The Golden Mean of healthy living

    Get PDF
    The notion that electrophiles serve as messengers in cell signaling is now widely accepted. Nonetheless, major issues restrain acceptance of redox homeostasis and redox signaling as components of main- tenance of a normal physiological steady state. The first is that redox signaling requires sudden switching on of oxidant production and bypassing of antioxidant mechanisms rather than a continuous process that, like other signaling mechanisms, can be smoothly turned up or down. The second is the mis- perception that reactions in redox signaling involve “reactive oxygen species” rather than reaction of specific electrophiles with specific protein thiolates. The third is that hormesis provides protection against oxidants by increasing cellular defense or repair mechanisms rather than by specifically ad- dressing the offset of redox homeostasis. Instead, we propose that both oxidant and antioxidant signaling are main features of redox homeostasis. As the redox shift is rapidly reversed by feedback reactions, homeostasis is maintained by continuous signaling for production and elimination of electrophiles and nucleophiles. Redox homeostasis, which is the maintenance of nucleophilic tone, accounts for a healthy physiological steady state. Electrophiles and nucleophiles are not intrinsically harmful or protective, and redox homeostasis is an essential feature of both the response to challenges and subsequent feedback. While the balance between oxidants and nucleophiles is preserved in redox homeostasis, oxidative stress provokes the establishment of a new radically altered redox steady state. The popular belief that scavenging free radicals by antioxidants has a beneficial effect is wishful thinking. We propose, instead, that continuous feedback preserves nucleophilic tone and that this is supported by redox active nutri- tional phytochemicals. These nonessential compounds, by activating Nrf2, mimic the effect of en- dogenously produced electrophiles (parahormesis). In summary, while hormesis, although globally protective, results in setting up of a new phenotype, parahormesis contributes to health by favoring maintenance of homeostasis

    Lipid peroxidation and ferroptosis: The role of GSH and GPx4

    Get PDF
    Ferroptosis (FPT) is a form of cell death due to missed control of membrane lipid peroxidation (LPO). According to the axiomatic definition of non-accidental cell death, LPO takes place in a scenario of altered homeostasis. FPT, differently from apoptosis, occurs in the absence of any known specific genetically encoded death pathway or specific agonist, and thus must be rated as a regulated, although not "programmed", death pathway. It follows that LPO is under a homeostatic metabolic control and is only permitted when indispensable constraints are satisfied and the antiperoxidant machinery collapses. The activity of the selenoperoxidase Glutathione Peroxidase 4 (GPx4) is the cornerstone of the antiperoxidant defence. Converging evidence on both mechanism of LPO and GPx4 enzymology indicates that LPO is initiated by alkoxyl radicals produced by ferrous iron from the hydroperoxide derivatives of lipids (LOOH), traces of which are the unavoidable drawback of aerobic metabolism. FPT takes place when a threshold has been exceeded. This occurs when the major conditions are satisfied: i) oxygen metabolism leading to the continuous formation of traces of LOOH from phospholipid-containing polyunsaturated fatty acids; ii) missed enzymatic reduction of LOOH; iii) availability of ferrous iron from the labile iron pool. Although the effectors impacting on homeostasis and leading to FPT in physiological conditions are not known, from the available knowledge on LPO and GPx4 enzymology we propose that it is aerobic life itself that, while supporting bioenergetics, is also a critical requisite of FPT. Yet, when the homeostatic control of the steady state between LOOH formation and reduction is lost, LPO is activated and FPT is executed

    How do nutritional antioxidants really work: nucleophilic tone and para-hormesis versus free radical scavenging in vivo.

    Get PDF
    We present arguments for an evolution in our understanding of how antioxidants in fruits and vegetables exert their health-protective effects. There is much epidemiological evidence for disease prevention by dietary antioxidants and chemical evidence that such compounds react in one-electron reactions with free radicals in vitro. Nonetheless, kinetic constraints indicate that in vivo scavenging of radicals is ineffective in antioxidant defense. Instead, enzymatic removal of nonradical electrophiles, such as hydroperoxides, in two-electron redox reactions is the major antioxidant mechanism. Furthermore, we propose that a major mechanism of action for nutritional antioxidants is the paradoxical oxidative activation of the Nrf2 (NF-E2-related factor 2) signaling pathway, which maintains protective oxidoreductases and their nucleophilic substrates. This maintenance of "nucleophilic tone," by a mechanism that can be called "para-hormesis," provides a means for regulating physiological nontoxic concentrations of the nonradical oxidant electrophiles that boost antioxidant enzymes, and damage removal and repair systems (for proteins, lipids, and DNA), at the optimal levels consistent with good health

    Phospholipid hydroperoxide glutathione peroxidase of rat testis. Gonadotropin dependence and immunocytochemical identification.

    Get PDF
    A high glutathione peroxidase activity toward phospholipid hydroperoxides is present in rat testis. The attribution of this activity to the selenoenzyme phospholipid hydroperoxide glutathione peroxidase (PHGPX) was supported by cross-reactivity with antibodies raised against pig heart PHGPX which had been purified and characterized. Rat testis PHGPX is partially cytosolic and partially linked to nuclei and mitochondria. The soluble and organelle-bound enzymes appear identical by Western blot analysis. PHGPX, but neither selenium-dependent nor non-selenium-dependent glutathione peroxidase activity, is expressed in testes only after puberty, disappears after hypophysectomy, and is partially restored by gonadotropin treatment. Specific immunostaining of testes by antiserum against PHGPX appears as a fine granular brown pattern localized throughout the cytoplasm in more immature cells but is confined to the peripheral part of the cytoplasm, the nuclear membrane, and mitochondria in maturating spermatogenic cells. As expected, immunostaining of spermatogenic cells in hypophysectomized animals was negative, but gonadotropin treatment only marginally increased the immunoreactivity. The expression of PHGPX in testes is consistent with the previously described specific requirement for selenium for synthesis of a 15-20-kDa selenoprotein which is related to the production of functional spermatozoa

    Expression of a catalytically inactive mutant form of glutathione peroxidase 4 (Gpx4) confers a dominant-negative effect in male fertility.

    Get PDF
    The selenoenzyme Gpx4 is essential for early embryogenesis and cell viability for its unique function to prevent phospholipid oxidation. Recently, the cytosolic form of Gpx4 was identified as an upstream regulator of a novel form of non-apoptotic cell death, called ferroptosis, whereas the mitochondrial isoform of Gpx4 (mGpx4) was previously shown to be crucial for male fertility. Here, we generated and analyzed mice with targeted mutation of the active site selenocysteine (Sec) of Gpx4 (Gpx4_U46S). Mice homozygous for Gpx4_U46S died at the same embryonic stage (E7.5) as Gpx4-/- embryos as expected. Surprisingly, male mice heterozygous for Gpx4_U46S presented subfertility. Subfertility was manifested in a reduced number of litters from heterozygous breedings and an impairment of spermatozoa to fertilize oocytes in vitro. Morphologically, sperm isolated from heterozygous Gpx4_U46S mice revealed many structural abnormalities particularly in the spermatozoan midpiece due to improper oxidation and polymerization of sperm capsular proteins and malformation of the mitochondrial capsule surrounding and stabilizing sperm mitochondria. These findings are reminiscent of sperm isolated from selenium-deprived rodents or from mice specifically lacking mGpx4. Due to a strongly facilitated incorporation of Ser in the polypeptide chain as compared to Sec at the UGA codon, expression of the catalytically inactive Gpx4_U46S was found to be strongly increased. Since the stability of the mitochondrial capsule of mature spermatozoa depends on the moonlighting function of Gpx4 both as an enzyme oxidizing capsular protein thiols and being a structural protein, tightly controlled expression of functional Gpx4 emerges being key for full male fertility

    Phospholipid hydroperoxide glutathione peroxidase is the 18-kDa selenoprotein expressed in human tumor cell lines.

    Get PDF
    Human tumor cell lines cultured in 75Se-containing media demonstrate four major 75Se-labeled cellular proteins (57, 22, 18, and 12 kDa) on sodium dodecyl sulfate-polyacrylamide gel electrophoresis and autoradiography. Among these selenoproteins, an enzymatic activity is known only for the 22-kDa protein, since this protein has been identified as the monomer of glutathione peroxidase. However, all tested cell lines also contained a peroxidase activity with phospholipid hydroperoxides that is completely accounted for by the other selenoenzyme, phospholipid hydroperoxide glutathione peroxidase (PHGPX) (Ursini, F., Maiorino, M., and Gregolin, C. (1985) Biochim. Biophys. Acta 839, 62-70). Sodium dodecyl sulfate-polyacrylamide gel electrophoresis and autoradiography of 75Se-labeled proteins separated by gel permeation chromatography supported the identification of PHGPX as the monomeric protein matching the 18 kDa band. This paper is the first report on the identification of PHGPX in human cells
    • …
    corecore