12,439 research outputs found
An Active-Sterile Neutrino Transformation Solution for r-Process Nucleosynthesis
We discuss how matter-enhanced active-sterile neutrino transformation in both
neutrino and antineutrino channels could enable the production of the rapid
neutron capture (r-process) nuclei in neutrino-heated supernova ejecta. In this
scheme the lightest sterile neutrino would be heavier than the electron
neutrino and split from it by a vacuum mass-squared difference roughly between
3 and 70 eV and vacuum mixing angle given by .Comment: 27 pages plus twelve figures. Submitted to Phys. Rev.
Wind-tunnel/flight correlation study of aerodynamic characteristics of a large flexible supersonic cruise airplane (XB-701) 2: Extrapolation of wind-tunnel data to full-scale conditions
The results of calculations necessary to extrapolate performance data on an XB-70-1 wind tunnel model to full scale at Mach numbers from 0.76 to 2.53 are presented. The extrapolation was part of a joint program to evaluate performance prediction techniques for large flexible supersonic airplanes similar to a supersonic transport. The extrapolation procedure included: interpolation of the wind tunnel data at the specific conditions of the flight test points; determination of the drag increments to be applied to the wind tunnel data, such as spillage drag, boundary layer trip drag, and skin friction increments; and estimates of the drag items not represented on the wind tunnel model, such as bypass doors, roughness, protuberances, and leakage drag. In addition, estimates of the effects of flexibility of the airplane were determined
ALMA observations of 99 GHz free-free and H40 line emission from star formation in the centre of NGC 253
We present Atacama Large Millimeter/submillimeter Array observations of 99.02
GHz free-free and H40 emission from the centre of the nearby starburst
galaxy NGC 253. We calculate electron temperatures of 3700-4500 K for the
photoionized gas, which agrees with previous measurements. We measure a
photoionizing photon production rate of s and
a star formation rate of M yr within the central
2010 arcsec, which fall within the broad range of measurements from
previous millimetre and radio observations but which are better constrained. We
also demonstrate that the dust opacities are ~3 dex higher than inferred from
previous near-infrared data, which illustrates the benefits of using millimetre
star formation tracers in very dusty sources.Comment: 5 pages, 3 figures, accepted for publication in MNRAS Letter
Sustaining entrepreneurial business: a complexity perspective on processes that produce emergent practice
This article examines the management practices in an entrepreneurial small firm which sustain the business. Using a longitudinal qualitative case study, four general processes are identified (experimentation, reflexivity, organising and sensing), that together provide a mechanism to sustain the enterprise. The analysis draws on concepts from entrepreneurship and complexity science. We suggest that an entrepreneur’s awareness of the role of these parallel processes will facilitate their approaches to sustaining and developing enterprises. We also suggest that these processes operate in parallel at multiple levels, including the self, the business and inter-firm networks. This finding contributes to a general theory of entrepreneurship. A number of areas for further research are discussed arising from this result
Using small reverse cycle air conditioners in relocatable classrooms - a case study
A 9-month study of four relocatable school buildings, each retro-fitted with small reverse cycle air conditioners (ACs), was conducted to investigate their effectiveness in heating and cooling the classrooms. A comparison with data from previous studies found the energy used by the ACs for heating these temporary classrooms was only 19–20% of the energy used by individual gas heaters installed in permanent classrooms. When equipment efficiencies were considered, the AC units supplied 20–27% less energy to heat the classrooms. The possible reasons for this reduction in supplied energy are explored in this paper. CO2 emissions for the AC units in heating mode, however, were calculated to be 16% greater than for individual gas heaters. The AC units were also used for cooling and on an average the total annual energy consumption for heating and cooling was found to be 11.6 kWh m−2. Responses to a small survey of staff and students about the use and operation of the conditioners are presented. Their responses were more favourable than the predictions of comfort levels in the classrooms using the Predicted Mean Vote–Predicted Percentage of Dissatisfaction (PMV–PPD) model, which indicated “uncomfortable” conditions on average summer days at 3:00 p.m. and average winter days at 10:00 a.m. Background noise levels in the classrooms with the air conditioners in use were above the recommended maximum design level of 45 dB(A); levels of up to 65 dB(A) were measured.<br /
Simulation of condensation problems in a roller-skating centre
A commercial roller-skating centre in southern Australia had condensation problems on both the roof and floor. The building is a typical warehouse-type structure with a high level of natural ventilation due to poor construction and permanently open vents. A computer model of the building, using the thermal simulation software TRNSYS, was calibrated from a sensitivity analysis of three key parameters, namely air exchange rate, roof surface heat transfer coefficient and deep ground temperature. The predicted times of condensation on the roof were compared with site observations. The time of year was predicted with acceptable accuracy, although earlier in the morning than had been observed. The effect of installing foil insulation in the roof was simulated. Under normal winter conditions, this modification was enough to stop the condensation. However, in unusually cold and humid conditions, condensation still occurred on both surfaces. This was overcome by heating the floor (15 W/m 2 ) for approximately eight hours. Subsequent modifications have demonstrated the value of the simulations.<br /
Using Big Bang Nucleosynthesis to Extend CMB Probes of Neutrino Physics
We present calculations showing that upcoming Cosmic Microwave Background
(CMB) experiments will have the power to improve on current constraints on
neutrino masses and provide new limits on neutrino degeneracy parameters. The
latter could surpass those derived from Big Bang Nucleosynthesis (BBN) and the
observationally-inferred primordial helium abundance. These conclusions derive
from our Monte Carlo Markov Chain (MCMC) simulations which incorporate a full
BBN nuclear reaction network. This provides a self-consistent treatment of the
helium abundance, the baryon number, the three individual neutrino degeneracy
parameters and other cosmological parameters. Our analysis focuses on the
effects of gravitational lensing on CMB constraints on neutrino rest mass and
degeneracy parameter. We find for the PLANCK experiment that total (summed)
neutrino mass eV could be ruled out at or better.
Likewise neutrino degeneracy parameters and could be detected or ruled out at
confidence, or better. For POLARBEAR we find that the corresponding detectable
values are , , and , while for EPIC we obtain ,
, and . Our forcast for
EPIC demonstrates that CMB observations have the potential to set constraints
on neutrino degeneracy parameters which are better than BBN-derived limits and
an order of magnitude better than current WMAP-derived limits.Comment: 27 pages, 11 figures, matches published version in JCA
Applications of Skylab EREP photographs to mapping landforms and environmental geomorphology in the Great Plains and Midwest
The following evaluations of Skylab photographs were undertaken: (1) the 1290 Skylab S190A and S190B photographs of Illinois, Iowa, Kansas, Missouri, Nebraska, and South Dakota were evaluated in detail in terms of coverage, cloud cover, photographic quality, endlap, detectability of roads and stereorelief, and utility for geomorphologic mapping, and (2) the utility of the Skylab photos were tested for interpretive analytic mapping of geomorphologic features over large areas representative of different parts of this region. Photointerpretative maps of analytic geomorphology were obtained for various test areas representative of the varied landscapes in the region. These maps are useful for regional land-use planning, ground-water exploration, and other environmental geomorphologic-geologic applications. Compared with LANDSAT-1 MSS images, Skylab photos afford almost as extensive overviews of large areas but in considerably greater detail, and for many SL photos, moderate stereorelief. However, repetitive multiseasonal, cloud-free coverage by high-quality photos is very limited and many areas have no coverage at all
Modulus Computational Entropy
The so-called {\em leakage-chain rule} is a very important tool used in many
security proofs. It gives an upper bound on the entropy loss of a random
variable in case the adversary who having already learned some random
variables correlated with , obtains some further
information about . Analogously to the information-theoretic
case, one might expect that also for the \emph{computational} variants of
entropy the loss depends only on the actual leakage, i.e. on .
Surprisingly, Krenn et al.\ have shown recently that for the most commonly used
definitions of computational entropy this holds only if the computational
quality of the entropy deteriorates exponentially in
. This means that the current standard definitions
of computational entropy do not allow to fully capture leakage that occurred
"in the past", which severely limits the applicability of this notion.
As a remedy for this problem we propose a slightly stronger definition of the
computational entropy, which we call the \emph{modulus computational entropy},
and use it as a technical tool that allows us to prove a desired chain rule
that depends only on the actual leakage and not on its history. Moreover, we
show that the modulus computational entropy unifies other,sometimes seemingly
unrelated, notions already studied in the literature in the context of
information leakage and chain rules. Our results indicate that the modulus
entropy is, up to now, the weakest restriction that guarantees that the chain
rule for the computational entropy works. As an example of application we
demonstrate a few interesting cases where our restricted definition is
fulfilled and the chain rule holds.Comment: Accepted at ICTS 201
- …