105 research outputs found

    Iron-Based Heavy Quasiparticles in SrFe4_{4}Sb12_{12}: An Infrared Spectroscopic Study

    Get PDF
    Temperature-dependent infrared reflectivity spectra of SrFe4_{4}Sb12_{12} has been measured. A renormalized Drude peak with a heavy effective mass and a pronounced pseudogap of 10 meV develops in the optical conductivity spectra at low temperatures. As the temperature decreases below 100 K, the effective mass (mm^{*}) rapidly increases, and the scattering rate (1/τ1/\tau) is quenched. The temperature dependence of mm^{*} and 1/τ1/\tau indicates that the hybridization between the Fe 3d spins and the charge carriers plays an important role in determining the physical properties of SrFe4_{4}Sb12_{12} at low temperatures. This result is the clear evidence of the iron-based heavy quasiparticles.Comment: 5 pages, 5 figure

    Pancreatic insulin release in vitamin C-deficient senescence marker protein-30/gluconolactonase knockout mice

    Get PDF
    We recently identified senescence marker protein-30 as the lactone-hydrolyzing enzyme gluconolactonase, which is involved in vitamin C biosynthesis. In this study, we investigated the effects of vitamin C on insulin secretion from pancreatic β-cells using senescence marker protein-30/gluconolactonase knockout mice. In intraperitoneal glucose tolerance tests, vitamin C-deficient senescence marker protein-30/gluconolactonase knockout mice demonstrated impaired glucose tolerance with significantly lower blood insulin levels at 30 and 120 min post-challenge than in wild type mice (p<0.01–0.05). In contrast, vitamin C-sufficient senescence marker protein-30/gluconolactonase knockout mice demonstrated significantly higher blood glucose and lower insulin only at the 30 min post-challenge time point (p<0.05). Senescence marker protein-30/gluconolactonase knockout mice showed enhanced insulin sensitivity regardless of vitamin C status. Static incubation of islets revealed that 20 mM glucose-stimulated insulin secretion and islet ATP production were significantly decreased at 60 min only in vitamin C-deficient SMP30/GNL knockout mice relative to wild type mice (p<0.05). These results indicate that the site of vitamin C action lies between glycolysis and mitochondrial oxidative phosphorylation, while SMP30 deficiency itself impairs the distal portion of insulin secretion pathway

    Oral Exposure to Polystyrene Microplastics of Mice on a Normal or High-Fat Diet and Intestinal and Metabolic Outcomes

    Get PDF
    マイクロプラスチックの経口摂取が高脂肪食条件下での代謝障害を悪化させる. 京都大学プレスリリース. 2023-02-24.[Background:] Microplastics (MPs) are small particles of plastic (≤ 5mm in diameter). In recent years, oral exposure to MPs in living organisms has been a cause of concern. Leaky gut syndrome (LGS), associated with a high-fat diet (HFD) in mice, can increase the entry of foreign substances into the body through the intestinal mucosa. [Objectives:] We aimed to evaluate the pathophysiology of intestinal outcomes associated with consuming a high-fat diet and simultaneous intake of MPs, focusing on endocrine and metabolic systems. [Methods:] C57BL6/J mice were fed a normal diet (ND) or HFD with or without polystyrene MP for 4 wk to investigate differences in glucose tolerance, intestinal permeability, gut microbiota, as well as metabolites in serum, feces, and liver. [Results:] In comparison with HFD mice, mice fed the HFD with MPs had higher blood glucose, serum lipid concentrations, and nonalcoholic fatty liver disease (NAFLD) activity scores. Permeability and goblet cell count of the small intestine (SI) in HFD-fed mice were higher and lower, respectively, than in ND-fed mice. There was no obvious difference in the number of inflammatory cells in the SI lamina propria between mice fed the ND and mice fed the ND with MP, but there were more inflammatory cells and fewer anti-inflammatory cells in mice fed the HFD with MPs in comparison with mice fed the HFD without MPs. The expression of genes related to inflammation, long-chain fatty acid transporter, and Na⁺/glucose cotransporter was significantly higher in mice fed the HFD with MPs than in mice fed the HFD without MPs. Furthermore, the genus Desulfovibrio was significantly more abundant in the intestines of mice fed the HFD with MPs in comparison with mice fed the HFD without MPs. Muc2 gene expression was decreased when palmitic acid and microplastics were added to the murine intestinal epithelial cell line MODE-K cells, and Muc2 gene expression was increased when IL-22 was added. [Discussion:] Our findings suggest that in this study, MP induced metabolic disturbances, such as diabetes and NAFLD, only in mice fed a high-fat diet. These findings suggest that LGS might have been triggered by HFD, causing MPs to be deposited in the intestinal mucosa, resulting in inflammation of the intestinal mucosal intrinsic layer and thereby altering nutrient absorption. These results highlight the need for reducing oral exposure to MPs through remedial environmental measures to improve metabolic disturbance under high-fat diet conditions

    The role of needle-based confocal laser endomicroscopy in the diagnosis of pancreatic neuroendocrine tumors

    Get PDF
    Background/Aims Endoscopic ultrasound-guided fine-needle aspiration (EUS-FNA) is a highly accurate method for diagnosing pancreatic neuroendocrine tumors (PNETs); however, some PNETs are difficult to diagnose. Recently, the efficacy of needle-based confocal laser endomicroscopy (nCLE) in diagnosing solid pancreatic masses has been reported. However, the efficacy of nCLE in the diagnosis of PNETs remains unknown and only a small number of cases have been reported. Hence, this study aimed to evaluate the efficacy of nCLE in the diagnosis of PNETs. Methods This single-center retrospective study evaluated 30 consecutive patients with suspected PNETs on contrast-enhanced computed tomography, who consented to nCLE combined with EUS-FNA and were diagnosed using EUS-FNA or surgical resection. The diagnostic criteria for PNETs using nCLE were based on the nesting and trabecular and glandular arrangement of tumor cell clusters surrounded by capillary vessels and fibrosis, as reported in previous studies. Results The diagnosis using nCLE was classified into three categories: misdiagnosis in three cases (10%), non-diagnostic in six cases (20%), and diagnostic in 21 cases (70%). nCLE was able to diagnose PNET in one of the two cases with inconclusive EUS-FNA. Conclusions Although further development of the resolution and optimization of the diagnostic criteria are required, nCLE may constitute a useful diagnostic option in cases of inconclusive EUS-FNA for PNETs

    Modeling Low Muscle Mass Screening in Hemodialysis Patients

    Get PDF
    Introduction: Computed tomography (CT) can accurately measure muscle mass, which is necessary for diagnosing sarcopenia, even in dialysis patients. However, CT-based screening for such patients is challenging, especially considering the availability of equipment within dialysis facilities. We therefore aimed to develop a bedside prediction model for low muscle mass, defined by the psoas muscle mass index (PMI) from CT measurement. Methods: Hemodialysis patients (n = 619) who had undergone abdominal CT screening were divided into the development (n = 441) and validation (n = 178) groups. PMI was manually measured using abdominal CT images to diagnose low muscle mass by two independent investigators. The development group’s data were used to create a logistic regression model using 42 items extracted from clinical information as predictive variables; variables were selected using the stepwise method. External validity was examined using the validation group’s data, and the area under the curve (AUC), sensitivity, and specificity were calculated. Results: Of all subjects, 226 (37%) were diagnosed with low muscle mass using PMI. A predictive model for low muscle mass was calculated using ten variables: each grip strength, sex, height, dry weight, primary cause of end-stage renal disease, diastolic blood pressure at start of session, pre-dialysis potassium and albumin level, and dialysis water removal in a session. The development group’s adjusted AUC, sensitivity, and specificity were 0.81, 60%, and 87%, respectively. The validation group’s adjusted AUC, sensitivity, and specificity were 0.73, 64%, and 82%, respectively. Discussion/Conclusion: Our results facilitate skeletal muscle screening in hemodialysis patients, assisting in sarcopenia prophylaxis and intervention decisions

    Safety and efficacy of novel oblique-viewing scope for B2-endoscopic ultrasound-guided hepaticogastrostomy

    Get PDF
    Background/Aims Endoscopic ultrasound (EUS)-guided hepaticogastrostomy (EUS-HGS) performed at the intrahepatic bile duct segment 3 (B3) is widely used for biliary drainage. Although performing post-puncture procedures is easier in the intrahepatic bile duct segment 2 (B2) when using a conventional oblique-viewing (OV) EUS scope, this method may cause transesophageal puncture and severe adverse events. We evaluated the safety and efficacy of B2 puncture using a novel OV-EUS scope. Methods In this single-center retrospective study, we prospectively enrolled and collected data from 45 patients who consecutively underwent EUS-HGS procedures with a novel OV-EUS scope between September 2021 and December 2022 at our cancer center. Results The technical success rates of B2-EUS-HGS and EUS-HGS were 93.3% (42/45) and 97.8% (44/45), respectively. The early adverse event rate was 8.9% (4/45) with no cases of scope changes or transesophageal punctures. The median procedure time was 13 minutes (range, 5–30). Conclusions B2-EUS-HGS can be performed safely with the novel EG-740UT (Fujifilm) OV-scope without transesophageal puncture and with a high success rate. B2-EUS-HGS using this novel OV scope may be the preferred strategy for EUS-HGS

    Supramolecular double-stranded Archimedean spirals and concentric toroids

    Get PDF
    Connecting molecular-level phenomena to larger scales and, ultimately, to sophisticated molecular systems that resemble living systems remains a considerable challenge in supramolecular chemistry. To this end, molecular self-assembly at higher hierarchical levels has to be understood and controlled. Here, we report unusual self-assembled structures formed from a simple porphyrin derivative. Unexpectedly, this formed a one-dimensional (1D) supramolecular polymer that coiled to give an Archimedean spiral. Our analysis of the supramolecular polymerization by using mass-balance models suggested that the Archimedean spiral is formed at high concentrations of the monomer, whereas other aggregation types might form at low concentrations. Gratifyingly, we discovered that our porphyrin-based monomer formed supramolecular concentric toroids at low concentrations. Moreover, a mechanistic insight into the self-assembly process permitted a controlled synthesis of these concentric toroids. This study both illustrates the richness of self-assembled structures at higher levels of hierarchy and demonstrates a topological effect in noncovalent synthesis

    DOCK2 is involved in the host genetics and biology of severe COVID-19

    Get PDF
    「コロナ制圧タスクフォース」COVID-19疾患感受性遺伝子DOCK2の重症化機序を解明 --アジア最大のバイオレポジトリーでCOVID-19の治療標的を発見--. 京都大学プレスリリース. 2022-08-10.Identifying the host genetic factors underlying severe COVID-19 is an emerging challenge. Here we conducted a genome-wide association study (GWAS) involving 2, 393 cases of COVID-19 in a cohort of Japanese individuals collected during the initial waves of the pandemic, with 3, 289 unaffected controls. We identified a variant on chromosome 5 at 5q35 (rs60200309-A), close to the dedicator of cytokinesis 2 gene (DOCK2), which was associated with severe COVID-19 in patients less than 65 years of age. This risk allele was prevalent in East Asian individuals but rare in Europeans, highlighting the value of genome-wide association studies in non-European populations. RNA-sequencing analysis of 473 bulk peripheral blood samples identified decreased expression of DOCK2 associated with the risk allele in these younger patients. DOCK2 expression was suppressed in patients with severe cases of COVID-19. Single-cell RNA-sequencing analysis (n = 61 individuals) identified cell-type-specific downregulation of DOCK2 and a COVID-19-specific decreasing effect of the risk allele on DOCK2 expression in non-classical monocytes. Immunohistochemistry of lung specimens from patients with severe COVID-19 pneumonia showed suppressed DOCK2 expression. Moreover, inhibition of DOCK2 function with CPYPP increased the severity of pneumonia in a Syrian hamster model of SARS-CoV-2 infection, characterized by weight loss, lung oedema, enhanced viral loads, impaired macrophage recruitment and dysregulated type I interferon responses. We conclude that DOCK2 has an important role in the host immune response to SARS-CoV-2 infection and the development of severe COVID-19, and could be further explored as a potential biomarker and/or therapeutic target

    The whole blood transcriptional regulation landscape in 465 COVID-19 infected samples from Japan COVID-19 Task Force

    Get PDF
    「コロナ制圧タスクフォース」COVID-19患者由来の血液細胞における遺伝子発現の網羅的解析 --重症度に応じた遺伝子発現の変化には、ヒトゲノム配列の個人差が影響する--. 京都大学プレスリリース. 2022-08-23.Coronavirus disease 2019 (COVID-19) is a recently-emerged infectious disease that has caused millions of deaths, where comprehensive understanding of disease mechanisms is still unestablished. In particular, studies of gene expression dynamics and regulation landscape in COVID-19 infected individuals are limited. Here, we report on a thorough analysis of whole blood RNA-seq data from 465 genotyped samples from the Japan COVID-19 Task Force, including 359 severe and 106 non-severe COVID-19 cases. We discover 1169 putative causal expression quantitative trait loci (eQTLs) including 34 possible colocalizations with biobank fine-mapping results of hematopoietic traits in a Japanese population, 1549 putative causal splice QTLs (sQTLs; e.g. two independent sQTLs at TOR1AIP1), as well as biologically interpretable trans-eQTL examples (e.g., REST and STING1), all fine-mapped at single variant resolution. We perform differential gene expression analysis to elucidate 198 genes with increased expression in severe COVID-19 cases and enriched for innate immune-related functions. Finally, we evaluate the limited but non-zero effect of COVID-19 phenotype on eQTL discovery, and highlight the presence of COVID-19 severity-interaction eQTLs (ieQTLs; e.g., CLEC4C and MYBL2). Our study provides a comprehensive catalog of whole blood regulatory variants in Japanese, as well as a reference for transcriptional landscapes in response to COVID-19 infection
    corecore