102 research outputs found
Overexpression of TFAM or Twinkle Increases mtDNA Copy Number and Facilitates Cardioprotection Associated with Limited Mitochondrial Oxidative Stress
Background Mitochondrial DNA (mtDNA) copy number decreases in animal and human heart failure (HF), yet its role in cardiomyocytes remains to be elucidated. Thus, we investigated the cardioprotective function of increased mtDNA copy number resulting from the overexpression of human transcription factor A of mitochondria (TFAM) or Twinkle helicase in volume overload (VO)-induced HF. Methods and Results Two strains of transgenic (TG) mice, one overexpressing TFAM and the other overexpressing Twinkle helicase, exhibit an approximately 2-fold equivalent increase in mtDNA copy number in heart. These TG mice display similar attenuations in eccentric hypertrophy and improved cardiac function compared to wild-type (WT) mice without any deterioration of mitochondrial enzymatic activities in response to VO, which was accompanied by a reduction in matrix-metalloproteinase (MMP) activity and reactive oxygen species after 8 weeks of VO. Moreover, acute VO-induced MMP-2 and MMP-9 upregulation was also suppressed at 24 h in both TG mice. In isolated rat cardiomyocytes, mitochondrial reactive oxygen species (mitoROS) upregulated MMP-2 and MMP-9 expression, and human TFAM (hTFAM) overexpression suppressed mitoROS and their upregulation. Additionally, mitoROS were equally suppressed in H9c2 rat cardiomyoblasts that overexpress hTFAM or rat Twinkle, both of which exhibit increased mtDNA copy number. Furthermore, mitoROS and mitochondrial protein oxidation from both TG mice were suppressed compared to WT mice. Conclusions The overexpression of TFAM or Twinkle results in increased mtDNA copy number and facilitates cardioprotection associated with limited mitochondrial oxidative stress. Our findings suggest that increasing mtDNA copy number could be a useful therapeutic strategy to target mitoROS in HF.Peer reviewe
Sapporo: A workflow execution service that encourages the reuse of workflows in various languages in bioinformatics [version 2; peer review: 1 approved, 2 approved with reservations]
The increased demand for efficient computation in data analysis encourages researchers in biomedical science to use workflow systems. Workflow systems, or so-called workflow languages, are used for the description and execution of a set of data analysis steps. Workflow systems increase the productivity of researchers, specifically in fields that use high-throughput DNA sequencing applications, where scalable computation is required. As systems have improved the portability of data analysis workflows, research communities are able to share workflows to reduce the cost of building ordinary analysis procedures. However, having multiple workflow systems in a research field has resulted in the distribution of efforts across different workflow system communities. As each workflow system has its unique characteristics, it is not feasible to learn every single system in order to use publicly shared workflows. Thus, we developed Sapporo, an application to provide a unified layer of workflow execution upon the differences of various workflow systems. Sapporo has two components: an application programming interface (API) that receives the request of a workflow run and a browser-based client for the API. The API follows the Workflow Execution Service API standard proposed by the Global Alliance for Genomics and Health. The current implementation supports the execution of workflows in four languages: Common Workflow Language, Workflow Description Language, Snakemake, and Nextflow. With its extensible and scalable design, Sapporo can support the research community in utilizing valuable resources for data analysis
The antiretroviral potency of APOBEC1 deaminase from small animal species
Although the role of the APOBEC3-dependent retroelement restriction system as an intrinsic immune defense against human immunodeficiency virus type1 (HIV-1) infection is becoming clear, only the rat ortholog of mammalian APOBEC1s (A1) thus far has been shown to possess antiviral activity. Here, we cloned A1 cDNAs from small animal species, and showed that similar to rat A1, both wild-type and Îvif HIV-1 infection was inhibited by mouse and hamster A1 (4- to 10-fold), whereas human A1 had negligible effects. Moreover, rabbit A1 significantly reduced the infectivity of both HIV-1 virions (>300-fold), as well as that of SIVmac, SIVagm, FIV and murine leukemia virus. Immunoblot analysis showed that A1s were efficiently incorporated into the HIV-1 virion, and their packaging is mediated through an interaction with the nucleocapsid Gag domain. Interestingly, there was a clear accumulation of particular C-T changes in the genomic RNAs of HIV-1 produced in their presence, with few G-A changes in the proviral DNA. Together, these data reveal that A1 may function as a defense mechanism, regulating retroelements in a wide range of mammalian species
ããªãã»é ã¯ã©ããã·ãŒã ã¬ã¹è¶ äŒå°é«åšæ³¢å é空æŽã®ç 究
ãè¶
äŒå°ç©ºæŽã¯é«åšæ³¢é»æµã«ããè¡šé¢çºç±ãå°ãªãã®ã§å€§é»åãäŸçµŠããŠé«å éé»çãåŸãããããŸãé£ç¶é転ãå¯èœã§å¹çã®è¯ãå éåšå©çšãã§ããã1965幎ã«åããŠã¹ã¿ã³ãã©ãŒã倧åŠã§è¶
äŒå°ç©ºæŽãäœãé»åãå éããŠä»¥æ¥ãè¶
äŒå°å éåšã«å¯Ÿããå€ãã®ç 究ããªãããããã®çµæããããŸã§ã«è¶
äŒå°ç©ºæŽã¯KEKã®TRISTANãCERNã®LEP-IIãDESYã®HERAçã®å€§åã¹ãã¬ãŒãžãªã³ã°ã«å¿çšãããããããŠçŸåšã§ã¯å€§éã®Bäžéåãçæããããã«å€§é»æµã®ããŒã ãå éããŠã«ããã·ãã£ãŒãé«ããè£
眮ã®KEKBãæ°ç²åæ¢çŽ¢ã®ããã«500GevããTevé åã®é«ãšãã«ã®ãŒåãç®æããç·åœ¢å éåšã建èšããTESLAèšç»ã®ããã®ãã¹ããã¡ã·ãªãã£ãŒçã«è¶
äŒå°ç©ºæŽãæ¡çšãããŠããããã®ãã¡ã®TESLAèšç»ã¯å
šé·33kmã®é»åãšéœé»åã®è¶
äŒå°ãªãã¢ã³ã©ã€ããŒã§ã25MV/m以äžã®å éé»çãš8x10 9以äžã®Qå€ãåŸãããé«æ§èœãª1.3GHzã®9ã»ã«ç©ºæŽã2äžå°ä»¥äžäœ¿ã倧èŠæš¡ãªå éåšå»ºèšã§ããããã®ãããªå€§èšç»ã«ãäºãªãæ¿ãæ·±çµãããŠããŒãã»ã«ãäœããé»åããŒã 溶æ¥ã§çµç«ãŠãåŸæ¥ã®ç©ºæŽè£œäœæ³ã§ã¯ãå€éã®äºãªãææ¶è²»ãšå€ãã®ç
©éãªé»åããŒã 溶æ¥å·¥çšã«ãããææè²»ãšè£œäœè²»ãé«é¡ã«ãªãè«å€§ãªå»ºèšè²»çšãå¿
èŠãšãããTESLAã®ãããªå€§èŠæš¡ãªå éåšã®å»ºèšèšç»ãå®çŸãããããã«ã¯é«æ§èœã§å®äŸ¡ãªç©ºæŽãéçºããããšã課é¡ãšãªãããã®ãããªèæ¯ãããçè
ã¯é«æ§èœãä¿èšŒããªãããææè²»ãšè£œäœè²»ã®åæžãå¯èœãªç©ºæŽãšããŠãäºãªãã»é
ã¯ã©ããã·ãŒã ã¬ã¹ç©ºæŽã®å®çŸãææ¡ãããããã¯åå
éŒæã«èèäºãªãæãæ¥åããã¯ã©ããæãäžäœæåããŠã·ãŒã ã¬ã¹ç©ºæŽãäœããã®ã§ãã¯ã©ããæãšã·ãŒã ã¬ã¹æ§é ãçµã¿åãããæ°ããçºæ³ã«ãããã®ã§ãããæ¬ç 究ã§ã¯ããã®è£œäœæ¹æ³ãšããŠã1ïŒæ¿ç¶ã®ã¯ã©ããæããã¹ããã³ã°æ³ãçšããŠã·ãŒã ã¬ã¹ç©ºæŽãäœãæ¹æ³ã2ïŒç®¡ç¶ã®ã¯ã©ããæãããã€ãããã©ãŒã æ³ã§ã·ãŒã ã¬ã¹ç©ºæŽãäœãäºã€ã®ã¢ã€ãã¢ãæå±ãããã®æ©æå®çŸã®ããã«ã¹ããã³ã°æåã«ã€ããŠã¯ã€ã¿ãªã¢ã®INFN-LNLç 究æããŸããã€ãããã©ãŒã ã«ã€ããŠã¯ãã€ãã®DESYç 究æãšå
±åç 究ãè¡ã£ãããããŠãããã®ç©ºæŽã®æ§èœè©äŸ¡ã«ã€ããŠã¯ç±³åœJefferson Labç 究æãšå
±åç 究ãè¡ã£ããKEKã§æž¬å®ããã¹ããã³ã°æ³ã«ããã¯ã©ãã空æŽã®å éé»çã¯30MV/mãéæãããããŸããã€ãããã©ãŒã æ³ã§è£œäœããã¯ã©ãã空æŽã¯ãKEKã§æž¬å®ãã空æŽã32MV/mãJefferson Labã§æž¬å®ãã空æŽã¯40MV/mã®å éé»çã«éããããããã®æ§èœã¯åŸæ¥ã®æº¶æ¥æ§é ã®äºãªãã»ãã«ã¯ç©ºæŽãšåçãªãã®ã§ããããã®ããã«æ©æã«é«æ§èœæ§ãéæãããããšã¯ãæ¬ç 究ã§ææ¡ããã¯ã©ããæããã·ãŒã ã¬ã¹ç©ºæŽã補äœããæ¹æ³ã¯é«æ§èœæ§ãä¿èšŒãããããšãå®èšŒãããã®ã§ããã次ã«çè
ã¯ã空æŽã®éç£ã«åããæ°ããã¯ã©ãã管ã®è£œäœæ³ãææ¡ãã補äœå®èšŒè©Šéšãè¡ã£ããTESLAã¿ã€ãã®9ã»ã«ã»ã¯ã©ããã·ãŒã ã¬ã¹ç©ºæŽã®è£œäœã«å¿
èŠãªé·å°ºã¯ã©ãã管ã®è£œäœæ¹æ³ãšããŠïŒšïŒ©ïŒ°æ¥åã«ããCu/Nb(溶æ¥ç®¡)/Cuã®åèãµã³ãã€ããæ§é ã®ã¯ã©ããçŽ ç®¡ã補äœãããã®çŽ 管ãåŒãæãæè¡ã䜿ã£ãŠäŒžç®¡ããã¢ã€ãã¢ãå®éšããããã®å®éšã§ã¯ã670mmé·ãã®çŽ 管ãçŽ3000mmã®é·ããŸã§äŒžç®¡ãããããããŠ9ã»ã«ç©ºæŽã®ãã€ãããã©ãŒã ã«å¿
èŠãª2000mmã®é·ãã®ã¯ã©ãã管ãäœãããšã«æåãããã¯ã©ãã管ã®è©Šäœãã管ã®è£œäœã³ã¹ããç®å®ãã9ã»ã«ç©ºæŽäžå°åœã94äžå以äžã®ææã³ã¹ãã«æããããããšã瀺ãããããã¯åŸæ¥ã®æº¶æ¥æ§é ã®ããªããã«ã¯ç©ºæŽã®è£œæ³ã«æ¯ã¹ãŠãææè²»ãçŽ1/3ã«äœæžã§ããéåžžã«ç»æçæ¹æ³ãšèšãããæŽã«ãHIP以å€ã®ã¯ã©ããæ¹æ³ã®æ€èšãšããŠççºå§æ¥æ³ã«ãã溶æ¥ããªã管ãšé
管ã®ççè©Šéšãè©Šã¿ã460mmé·ã®ççã¯ã©ãã管ãè©Šäœããããããã®HIPåã³ççã¯ã©ãã管ãã1.3GHzåã»ã«ç©ºæŽããã€ãããã©ãŒã æ³ã§æåããæåæ§ã®ç¢ºèªè©Šéšãè¡ã£ããããã§ææ¡ããã¯ã©ãã管ã®è£œäœæ³ã«ããææå質ã«ã€ããŠã¯ããã®ã¯ã©ãã管ããæåãã空æŽãäœæž©æ§èœè©ŠéšãããŠè©äŸ¡ããå¿
èŠåããããHIPåŒæã管ããæåãã空æŽãäœæž©æž¬å®ããããŸãæ¯èŒãšããŠãåŒæãå·¥çšãå«ãŸãªãHIPã®ã¿ã§äœã£ãã¯ã©ãã管åã³ççã¯ã©ãã管ãã補äœããå空æŽãäœæž©æž¬å®ããããã®çµæãäºãªã管ã®æº¶æ¥æ¬ é¥ãšè¡šé¢æ¬ é¥ãåå ãšæãããäœãæ§èœã§ãã£ããå
ã«ç€ºããããã«ãã·ãŒã ã¬ã¹ãªäºãªã管ãçšããçç管ããæåãã空æŽã®æ§èœãè¯ãããšãšãåãçç管ã§ã溶æ¥äºãªã管ã䜿çšããå Žåã«æ§èœãæªãããšãããæ§èœåäžã«åããŠäºãªã管ã®æº¶æ¥æ³ãæ¹åããäºãªãã®èåãå¢éããŠååãªè¡šé¢åŠçãè¡ããã¯ã©ãã管ãçŸåšæºåäžã§ãããããããã®ç®¡ãæåãã空æŽæ§èœã®è©äŸ¡ã¯æ¬è«ææåºæã«ã¯ãŸã çµè«ãåºããã溶æ¥äºãªã管ãçšããHIPåŒæãã¯ã©ãã管ã®å質ã«ã€ããŠã¯æ®ããã課é¡ã§ããããããäžé£ã®ç 究ææã¯ãTESLAã®ãããªå°æ¥ã®å€§èŠæš¡ãªå éåšå»ºèšã«å¿çšããããšã§ãæ§èœãäœäžããããšãªãã«çµæžçãªå éåšå»ºèšãå¯èœã«ãããæ¬ç 究ã¯ãã®ç¹ã«æ矩ããããã以äžã«æ¬è«æã®æ§æãšãã®æŠèŠã«ã€ããŠè¿°ã¹ããæ¬è«æã¯13ã®ç« ã§æ§æãã第1ç« ã§ã¯TRISTAN以éã®è¶
äŒå°é«åšæ³¢å éåšã®ååãè¿°ã¹ãæ代ãšãšãã«é«æ§èœåäžã€å€§ååãã€ã€ããçŸç¶ã玹ä»ããããããŠæ§èœçã«ããçµæžçã«ã倧èŠæš¡ãªå éåšã®å»ºèšã«å¯ŸåŠã§ããè¶
äŒå°ç©ºæŽãšããŠãçè
ã¯é
ãšäºãªãã®ã¯ã©ããæããæãã·ãŒã ã¬ã¹ç©ºæŽãææ¡ãããã®ç©ºæŽã®æ£åœæ§ãæ©æã«å®èšŒããããã«KEKãINFN-LNLãDESYãJefferson Labã®4ç 究æ©é¢ãšåœéå
±åç 究ãè¡ã£ãããšãè¿°ã¹ãããŸãæ¬ç 究ã®ç®çåã³æ矩ã«ã€ããŠè¿°ã¹ããã第2ç« ã§ã¯ç©ºæŽã補äœããã«åœããéèŠãªç©ºæŽã®ãã©ã¡ãŒã¿ãç解ããããã«ãå
±æ¯æ¯åæ°ã1300MHzã®å Žåã®TM010æ³¢ã«æŒãã解æãããåç空æŽã®ååŸã8.83cmã«ãé·ãã11.54cmã«æ±ºå®ãããã®åœ¢ç¶ã«é¢ããQå€ãè¡šé¢æµæïŒRsïŒçããã®åœ¢ç¶ã«é¢ãããã©ã¡ãŒã¿ãèšç®ããŠæ±ããããããã®å€ã¯SUPERFISHããã°ã©ã ãçšããèšç®æ©ã«ããèšç®çµæãšè¯ãäžèŽããããšã確èªããããŸãå
±æ¯æ¯åæ°ã«ã€ããŠã解æå€ãšæž¬å®å€åã³SUPERFISHã§æ±ããå€ãã»ãšãã©äžèŽããããšã確èªãããSUPERFISHã«é¢ããŠãã¡ãã·ã¥ãµã€ãºã0.3cmã«éžã¶ãšå
±æ¯æ¯åæ°ã®å€åã¯ãé
空æŽã®Qå€ãæ±ããéã«æž¬å®ããå
±æ¯æ¯åæ°ã®åå€å¹
çšåºŠã®éã«ãªãããšã調ã¹ãããŸãããã³ãã®å空æŽã®åãã©ã¡ãŒã¿ã®å€ãSUPERFISHã§èšç®ããŠç€ºãããã第3ç« ã¯ç©ºæŽè£œäœã®ç«å Žãããã€ã¹ããŒå¹æãå®å
šå°é»æ§è¶
äŒå°çã®äžè¬ç¥èããŸãšããããŸããè¶
äŒå°é«åšæ³¢ç©ºæŽã®å éé»çãå¶éããåå ã¯èšçç£çã§ããããšãè¿°ã¹ããã第4ç« ã§ã¯ç©ºæŽè£œäœæè¡ã«æ¬ ãããªã空æŽã®è¡šé¢åŠçã®æ¹æ³ã«ã€ããŠè¿°ã¹ããšãšãã«ã空æŽã®æ§èœãå¶éããçŸè±¡ã説æããŠããããåãé€ãããã®è¡šé¢åŠçã®æ¹æ³ã瀺ãããã第5ç« ã§ã¯è¶
äŒå°ç©ºæŽã®æ§èœæž¬å®æ³ã説æãã空æŽã®äœæž©è©Šéšæ¹æ³ã«ã€ããŠè©³çŽ°ã«è¿°ã¹ããã第6ç« ã§ã¯çè
ãææ¡ãã空æŽã®åªäœæ§ã瀺ããããã«ãæ·±çµããšé»åããŒã 溶æ¥ã§è£œäœããåŸæ¥æ³ãã¹ããã¿ãªã³ã°æ³ãã¹ããã³ã°æ³ããã€ãããã©ãŒã æ³ã®å空æŽã®è£œäœæ³ã玹ä»ãããããã®è£œäœäžã®åé¡ç¹ãææããããããŠããããã®æ¹æ³ã§è£œäœããããªããã«ã¯ç©ºæŽïŒã¹ããã¿ãªã³ã°æ³ãé€ãïŒã®å
žåçãªQå€ãšå éé»çã®äŸã瀺ããããªãæ¬è«æã§ã¯ç©ºæŽè£œäœãšãã®æ§èœè©äŸ¡ã¯äžå¯åãšäœçœ®ä»ããŠããããã®ç« ã§ç€ºããããªãã»ãã«ã¯ç©ºæŽã®æ§èœïŒã¹ããã¿ãªã³ã°æ³ãé€ãïŒã¯çè
ãKEKã§äœæž©æž¬å®ãããã第ïŒç« ã§ã¯KEKãINFN-LNLãDESYãJefferson Labã®å
±åç 究ã«æŒããŠãäºãªããšé
ã®ççã¯ã©ããæããã¹ããã³ã°æ³åã³ãã€ãããã©ãŒã æ³ã§è£œäœããã·ãŒã ã¬ã¹ç©ºæŽã®æ§èœæž¬å®ã®çµæã瀺ãããççã¯ã©ãã管ããã€ãããã©ãŒã æ³ã§è£œäœãã空æŽïŒINC2ïŒã¯å éé»çã40MV/mãQå€ã2x10 10ãåŸãŠãçè
ã®ææ¡ãã空æŽãé«é»çã«éããããšãç«èšŒããããŸããã¹ããã³ã°æ³ã«ããã¯ã©ãã空æŽïŒKENZO-2ïŒã®å€éšç£å Žã«ãã圱é¿ã¯1mGaussåœã0.56nΩã®è¡šé¢æµæã®å¢å ã§ããããšã枬å®ã§æ±ãããã第8ç« ã¯å°æ¥ã®9ã»ã«ç©ºæŽã«å¿
èŠãªé·å°ºã¯ã©ãã管ã®éç£ãç®çãšããŠãHIPæ¥åã«ããCu/Nb/Cuã®3å±€æ§é ã®åå
ã¯ã©ããçŽ ç®¡ãåŒæãæ³ã§äŒžç®¡ããŠé·å°ºã®ã¯ã©ãã管ã補äœããæ¹æ³ãçè
ã¯ææ¡ããããã®ç« ã§ã¯ãã®è£œäœè©Šéšã«é¢ããŠè©³çŽ°ã«è¿°ã¹ãããããŠããã®æ¹æ³ã®åé¡ç¹ãçµæžå¹æã瀺ãããã第9ç« ãççã¯ã©ãã管ã®è©Šäœããã®ç« ã§ã¯ã¯ã©ããæ³ã®æ¯èŒæ€èšã®ç®çã§è¡ã£ãHIPæ¥åãšã¯å¥ã®ã¯ã©ããæ³ã®ççã«ããã¯ã©ãã管ã®æ¥åè©Šéšã«ã€ããŠèª¬æãããã第10ç« ã§ã¯KEKãç¬èªã«éçºãããã€ãããã©ãŒã ã«ããã¯ã©ãã空æŽã®è£œäœã«ã€ããŠè¿°ã¹ãããããŠè©Šäœãã空æŽã®äœæž©æž¬å®ã®çµæã瀺ãããäºãªã管ã®æº¶æ¥æ¬ é¥ãè¡šé¢æ¬ é¥ãåå ããŠãããšæãããäœãæ§èœã§ãã£ããããã«é¢ããŠãæ§èœåäžã®ããã®äºãªã管ã®èåå¢éãšæº¶æ¥æ¹åãããã¯ã©ãã管ãçŸåšæºåäžã§ãããã第11ç« ã§ã¯ã¯ã©ããæã®å§å»¶æ§ãæ©æ¢°çæ§è³ªçã調æ»ããçµæã«ã€ããŠå ±åãããããã«ãããäºãªããé
ã§å
ãããšã«ããé
ã®äŒžã³ã«è¿œåŸããŠäºãªãã䌞ã³ãŠãäºãªãåç¬ãããæåæ§ãåäžããããšãå€ã£ããã第12ç« ã§ã¯äºãªããšé
ã®ã¯ã©ãã管ããã€ãããã©ãŒã æ³ã§å å·¥ããå Žåã®9ã»ã«ç©ºæŽã®è£œäœã³ã¹ãã¯æº¶æ¥æ§é ã®åŸæ¥æ³ã®1/3ã§ããããšã瀺ãããã第13ç« ã§ã¯æ¬è«æã®ãŸãšããšä»åŸã®èª²é¡ã«ã€ããŠè¿°ã¹ã
- âŠ