19 research outputs found
Investigation on drag reduction on rotating blade surfaces with microtextures
To enhance the aerodynamic performance of aero engine blades, simulations and experiments regarding microtextures to reduce the flow loss on the blade surfaces were carried out. First, based on the axisymmetric characteristics of the impeller, a new simulation method was proposed to determine the aerodynamic parameters of the blade model through the comparison of flow field characteristics and simulation results. Second, the placement position and geometrical parameters (height, width, and spacing) of microtextures with lower energy loss were determined by our simulation of microtextures on the blade surface, and the drag reduction mechanism was analyzed. Triangular ribs with a height of 0.2 mm, a width of 0.3 mm, and a spacing of 0.2 mm exhibited the best drag reduction, reducing the energy loss coefficient and drag by 1.45% and 1.31% for a single blade, respectively. Finally, the blades with the optimal microtexture parameters were tested in the wind tunnel. The experimental results showed that the microtexture decreased energy loss by 3.7% for a single blade under 57° angle of attack and 136.24 m/s, which was favorable regarding the drag reduction performance of the impeller with 45 blades
Analysis of Efficiency Characteristics of a Deep-Sea Hydraulic Power Source
Deep-sea submersibles carry limited energy sources, so a high efficiency of the equipment is required to improve endurance. In the deep-sea environment, the hydraulic power source is filled with oil, which causes structural deformation of the power source and changes in the physical properties of the medium, leading to unknown changes in the efficiency characteristics of the power source. In order to explore the efficiency characteristics of the deep-sea hydraulic power source composed of a gear pump and a DC (direct current) brushless motor in a variable sea depth environment, we undertook the following. First, considering the effects of seawater pressure and temperature on the physical properties of the medium and the radial clearance deformation of the gear pump, a mathematical model for the total efficiency of the hydraulic power source was established. The results indicate that the deformation of the pump body is mainly determined by the seawater pressure and working pressure. Subsequently, by analyzing the effects of the two factors on the efficiency of the power source, respectively, when the oil temperature range is large enough, the total efficiency of the power source will increase and then decrease under six sea depths; the total efficiency of the power source decreases with the increase in the rotational speed. However, in a land environment, the trend of the efficiency characteristics of the power source is opposite to that of the remaining six deep-sea environments, both in terms of oil temperature and rotational speed. Finally, the efficiency trend of the power source with changes in sea depth under rated conditions was obtained. Under different sea depth ranges, the optimal operating oil temperatures and suitable rotational speed ranges of the power source could be obtained. This paper could provide a certain theoretical basis for the research and development of deep-sea equipment
Biocontrol of Candida albicans by Antagonistic Microorganisms and Bioactive Compounds
Candida albicans is an endogenous opportunistic pathogenic fungus that is harmless when the host system remains stable. However, C. albicans could seriously threaten human life and health when the body’s immune function declines or the normal flora is out of balance. Due to the increasing resistance of candidiasis to existing drugs, it is important to find new strategies to help treat this type of systemic fungal disease. Biological control is considered as a promising strategy which is more friendly and safer. In this review, we compare the bacteriostatic behavior of different antagonistic microorganisms (bacteria and fungi) against C. albicans. In addition, natural products with unique structures have attracted researchers’ attention. Therefore, the bioactive nature products produced by different microorganisms and their possible inhibitory mechanisms are also reviewed. The application of biological control strategies and the discovery of new compounds with antifungal activity will reduce the resistance of C. albicans, thereby promoting the development of novel diverse antifungal drugs
New Secondary Metabolites from Marine-Derived Fungus <i>Talaromyces minnesotensis</i> BTBU20220184
Six new compounds, talamitones A and B (1 and 2), demethyltalamitone B (3), talamiisocoumaringlycosides A and B (4 and 5), and talaminaphtholglycoside (6), together with six known compounds (7–12), were isolated from the marine-derived fungus Talaromyces minnesotensis BTBU20220184. The new structures were characterized by using HRESIMS and NMR. This is the first report of isocoumaringlycoside derivatives from a fungus of the Talaromyces genus. Compounds 5, 6, and 9 showed synergistic antibacterial activity against Staphylococcus aureus
New Antibacterial Secondary Metabolites from a Marine-Derived Talaromyces sp. Strain BTBU20213036
New polyketide-derived oligophenalenone dimers, bacillisporins K and L (1 and 2) and xanthoradone dimer rugulosin D (3), together with four known compounds, bacillisporin B (4), macrosporusone D (5), rugulosin A and penicillide (6 and 7), were isolated from the marine-derived fungus Talaromyces sp. BTBU20213036. Their structures were determined by detailed analysis of HRESIMS, 1D and 2D NMR data, and the absolute configurations were determined on the basis of calculated and experimental electronic circular dichroism (ECD). The antibacterial and antifungal activities of these compounds were tested against Gram-positive—Staphylococcus aureus, Gram-negative—Escherichia coli, and fungal strain—Candida albicans. These compounds showed potential inhibitory effects against S. aureus with minimum inhibitory concentrations ranging from 0.195 to 100 µg/mL
Characterization of Hypolipidemic Phenol Analogues from Fermented Tea by <i>Eurotium cristatum</i>
Fuzhuan brick tea (FBT), a type of black tea, is a traditional beverage in China, especially popular among frontier ethnic groups. FBT is well-known for its health benefits, such as hypoglycemic, anti-hypertensive, anti-inflammatory, diuretic, and detoxification effects. Nevertheless, the underlying mechanisms on the molecular level are still elusive and the key compounds responsible for the health benefits are unidentified. Previous studies have mainly focused on functional studies of the water extract. However, FBT is typically cooked with butter or milk. Therefore, we hypothesized that some lipophilic components in FBT, which can be absorbed through the co-consumption of butter or milk, may play an important role in the health benefits. The present study aimed to investigate whether the liposoluble extract of FBT alleviates symptoms related to metabolic diseases and to identify the active compounds involved. By comparing the high-performance liquid chromatography (HPLC) profiles of water, milk and hexane extract, some low polarity peaks were observed in the milk and hexane extracts. Furthermore, the hexane extract treatment alleviated body weight gain, serum total cholesterol and triglyceride levels, and inhibited the accumulation of hepatic fat granules in a high-fat diet (HFD)-induced C57BL/6N mouse model. In order to identify the key functional lipophilic compounds in FBT, the hexane extract of FBT was subjected to chemical characterization. Four phenol analogs were characterized, namely, isodihydroauroglaucin (1), dihydroauroglaucin (2), tetrahydroauroglaucin (3), and flavoglaucin (4). Compounds 1 and 4 reduced the levels of total cholesterol and triglyceride in vivo. Both compounds also inhibited the high-fat diet-induced body weight gain and accumulation of fat granules in the liver of C57BL/6N mice. Isodihydroauroglaucin and flavoglaucin have therefore been identified as bioactive ingredients that contribute to the health benefits of FBT
Symphyocladins A-G: bromophenol adducts from a Chinese marine red alga, Symphyocladia latiuscula
Chemical analysis of a Chinese collection of the marine red alga Symphyocladia latiuscula yielded five unprecedented bromophenol-aconitic acid adducts, symphyocladins A-E, together with a new example of a bromophenol-pyroglutamic acid adduct, symphyocladin F, a new example of a bromophenol-urea adduct, symphyocladin G, and the known methyl ester of cis-aconitic acid. The structures were assigned on the basis of detailed spectroscopic analysis, and were consistent with a plausible biosynthetic pathway linking these bromophenol natural products with a putative quinone methide intermediate. Symphyocladins A/B and C/D were isolated as inseparable 1:1 mixtures of E/Z isomers. A plausible mechanism for their facile equilibration during handling and storage is presented. The bromophenol-urea exhibits antifungal activity (MIC 10 μg/mL) against Candida albicans
Two New Bromophenols with Radical Scavenging Activity from Marine Red Alga Symphyocladia latiuscula
Chemical investigation of a Chinese collection of marine red alga Symphyocladia latiuscula yielded two new highly brominated phenols. The structures of the new compounds were elucidated by detailed spectroscopic analysis, including HRMS, 1D and 2D NMR and MS methods. Compounds 1 and 2 were evaluated for radical scavenging capability by 1,1-diphenyl-2-picrylhydrazuyl (DPPH) radical with the IC50 value of 14.5 and 20.5 μg/mL, respectively
New Secondary Metabolites from the Marine-Derived Fungus <i>Talaromyces mangshanicus</i> BTBU20211089
Seven new compounds, namely talaromanloid A (1), talaromydene (2), 10-hydroxy-8-demethyltalaromydine and 11-hydroxy-8-demethyltalaromydine (3 and 4), talaromylectone (5), and ditalaromylectones A and B (6 and 7), together with seven known compounds were identified from a marine-derived fungus, Talaromyces mangshanicus BTBU20211089, which was isolated from a sediment sample collected from the South China Sea. Their chemical structures were determined using spectroscopic data, including HRESIMS, 1D, and 2D NMR techniques. The absolute configurations of 1 and 2 were elucidated by comparing experimental and calculated ECD spectra. Compounds 1, 2, 6, and 7 are new compounds possessing a novel carbon skeleton. Compound 6 is a dimeric molecule of 3 and 9. Compound 7 shared a unique structure of the cyclized dimer of 3 and 4. All the compounds were tested for their bioactivities against Staphylococcus aureus, Escherichia coli, and Candida albicans