2,106 research outputs found

    Freezing point osmometry of milk to determine the additional water content – an issue in general quality control and German food regulation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The determination of the osmolality of aqueous samples using a freezing point osmometer is a well-established, routine laboratory method. In addition to their use in clinical and pharmaceutical laboratories, freezing point osmometers are also employed in food testing laboratories. One application is the determination of the osmolality of milk. Although cow's milk is a natural product whose water content is approximately 87%, the osmolality of milk is a significant value when the milk is collected from a larger population of animals. This value is used in milk processing to control the water content, based on the German Food Control Regulations for Milk.</p> <p>Results</p> <p>Measurement of the freezing point and osmolality of milk samples was performed with a Knauer Semi-Micro Freezing Point Osmometer. Osmolality was measured for the untreated milk samples and following their dilution (by volume) with 10% and 50% water. The measurements were made after 1, 4 and 7 days to evaluate changes over time. All measurement values for the undiluted milk were spread over a small interval with an average of 271 mOsmol/kg. After mixing the milk samples with 10% water, the average decreased to 242 mOsmol/kg, while mixing with 50% water resulted in an average osmolality of 129 mOsmol/kg. There was no significant change for the osmolality within the 7 days (measurements from days 1, 4 and 7).</p> <p>Conclusion</p> <p>The results observed demonstrate clearly that the additional water content of milk can be determined easily using a freezing point osmometer. Milk samples that contain additional water have a significantly decreased osmolality, corresponding to an increased freezing point. The effect on osmolality of ageing the milk samples could not be determined in this study's time-dependent measurements.</p

    Active Learning for SAT Solver Benchmarking

    Get PDF
    Benchmarking is a crucial phase when developing algorithms. This also applies to solvers for the SAT (propositional satisfiability) problem. Benchmark selection is about choosing representative problem instances that reliably discriminate solvers based on their runtime. In this paper, we present a dynamic benchmark selection approach based on active learning. Our approach predicts the rank of a new solver among its competitors with minimum runtime and maximum rank prediction accuracy. We evaluated this approach on the Anniversary Track dataset from the 2022 SAT Competition. Our selection approach can predict the rank of a new solver after about 10 % of the time it would take to run the solver on all instances of this dataset, with a prediction accuracy of about 92 %. We also discuss the importance of instance families in the selection process. Overall, our tool provides a reliable way for solver engineers to determine a new solver’s performance efficiently

    Scrutinizing and De-Biasing Intuitive Physics with Neural Stethoscopes

    Full text link
    Visually predicting the stability of block towers is a popular task in the domain of intuitive physics. While previous work focusses on prediction accuracy, a one-dimensional performance measure, we provide a broader analysis of the learned physical understanding of the final model and how the learning process can be guided. To this end, we introduce neural stethoscopes as a general purpose framework for quantifying the degree of importance of specific factors of influence in deep neural networks as well as for actively promoting and suppressing information as appropriate. In doing so, we unify concepts from multitask learning as well as training with auxiliary and adversarial losses. We apply neural stethoscopes to analyse the state-of-the-art neural network for stability prediction. We show that the baseline model is susceptible to being misled by incorrect visual cues. This leads to a performance breakdown to the level of random guessing when training on scenarios where visual cues are inversely correlated with stability. Using stethoscopes to promote meaningful feature extraction increases performance from 51% to 90% prediction accuracy. Conversely, training on an easy dataset where visual cues are positively correlated with stability, the baseline model learns a bias leading to poor performance on a harder dataset. Using an adversarial stethoscope, the network is successfully de-biased, leading to a performance increase from 66% to 88%

    Bose-Einstein transition temperature in a dilute repulsive gas

    Get PDF
    We discuss certain specific features of the calculation of the critical temperature of a dilute repulsive Bose gas. Interactions modify the critical temperature in two different ways. First, for gases in traps, temperature shifts are introduced by a change of the density profile, arising itself from a modification of the equation of state of the gas (reduced compressibility); these shifts can be calculated simply within mean field theory. Second, even in the absence of a trapping potential (homogeneous gas in a box), temperature shifts are introduced by the interactions; they arise from the correlations introduced in the gas, and thus lie inherently beyond mean field theory - in fact, their evaluation requires more elaborate, non-perturbative, calculations. One illustration of this non-perturbative character is provided by the solution of self-consistent equations, which relate together non-linearly the various energy shifts of the single particle levels k. These equations predict that repulsive interactions shift the critical temperature (at constant density) by an amount which is positive, and simply proportional to the scattering length a; nevertheless, the numerical coefficient is difficult to compute. Physically, the increase of the temperature can be interpreted in terms of the reduced density fluctuations introduced by the repulsive interactions, which facilitate the propagation of large exchange cycles across the sample.Comment: two minor corrections, two refs adde

    Crise econômica, cooperação e relações internacionais: uma reflexão comparativa das políticas norte-americana, brasileira e da União Européia

    Get PDF
    O presente trabalho aborda as principais ações dos governos dos Estados Unidos, da Europa e do Brasil para tentar minimizar os efeitos da crise econômica de 2008. Especificamente, os governos da Europa e dos Estados Unidos optaram por auxiliar o setor econômico por meio de pacotes bilionários de incentivos. As principais medidas foram investimentos na infra-estrutura, ajudas e estatização temporária de bancos estrategicamente relevantes, estímulos ao consumo interno, especialmente para o setor automotivo. Para combater a crise global, as reuniões do G20 ganharam um novo destaque. Nessas reuniões, os países em desenvolvimento, como o Brasil, obtiveram uma importância maior, já que a crise afetou principalmente os países desenvolvidos. Nessas reuniões, foram discutidos os próximos passos, medidas conjuntas e reformas no sistema financeiro internacional

    Hepatic lipid composition differs between ob/ob and ob/+ control mice as determined by using in vivo localized proton magnetic resonance spectroscopy

    Get PDF
    Object: Hepatic lipid accumulation is associated with nonalcoholic fatty liver disease, and the metabolic syndrome constitutes an increasing medical problem. In vivo proton magnetic resonance spectroscopy (1H MRS) allows the assessment of hepatic lipid levels noninvasively and also yields information on the fat composition due to its high spectral resolution. Materials and methods: We applied 1H MRS at 9.4T to study lipid content and composition in eight leptin-deficient ob/ob mice as a model of obesity and in four lean ob/+ control mice at 24weeks of age. PRESS sequence was used. For accurate estimation of signal intensity, differences in relaxation behavior of individual signals were accounted for each mouse individually. Also, in order to minimize spectral degrading due to motion artifacts, respiration gating was applied. Results: Significant differences between ob/ob and ob/+ control mice were found in both lipid content and composition. The mean chain length was found to be significantly longer in ob/ob mice with a higher fraction of monounsaturated lipids. Conclusion: 1H MRS enables accurate assessment in hepatic lipids in mice, which is attractive for mechanistic studies of altered metabolism given the large number of genetically engineered mouse models availabl
    corecore