45,799 research outputs found
Recommended from our members
The Influence of Water on Dielectric Behavior of Silica-filled Epoxy Nano-composites and Percolation Phenomenon
The dielectric properties of epoxy resin were studied as a function of hydration by dielectric spectroscopy. The dielectric spectroscopy measurements show different conduction and quasi-DC behaviors at very low frequencies (<10-2 Hz) with activation energies dependent on the hydration. These observations lead to the development of a model in which a “water shell” is formed around the nano-particles. The multiple shell model, originally proposed by Lewis and developed by Tanaka, has been further developed to explain low frequency dielectric spectroscopy results in which percolation of charge carriers through overlapping water shells was shown to occur. At 100% relative humidity, water is believed to surround the nanoparticles to a depth of approximately 10 monolayers as the first layer. A second layer of water is proposed that is dispersed by sufficiently concentrated to be conductive. If all the water had existed in a single layer surrounding a nanoparticle, this layer would have been approximately 5 nm thick at 100% RH. Filler particles that have surfaces that are functionalized to be hydrophobic considerably reduce the amount of water absorbed in nanocomposites under the same conditions of humidity. PEA results show that the wetted epoxy specimens have a higher threshold field of space charge accumulation than such dry specimens since water enhances charge decay
Recommended from our members
Influence of absorbed water on the dielectric properties and glass-transition temperature of silica-filled epoxy nanocomposites
Work on dielectric spectroscopy of epoxy resin filled with nano-SiO2 at different relative humidities and temperatures is reported. Above the glass-transition temperature (Tg), dc-like imperfect charge transport (QDC or LFD) dominates the low frequency dielectric spectrum. Another mid-frequency relaxation process was found in the non-dried composites. Water also induces glass-transition temperature decreases, which can be measured both by dielectric spectroscopy and DSC. Both theory and experiment demonstrated that a higher water content could exist in nanocomposites than unfilled epoxy suggesting a bigger free volume when nanostructured. In our system, the hydrophilic surface of silica is likely to cause water to surround and lead to delamination of the epoxy from SiO2. This is a potential mechanical and dielectric weakness in the nanocomposites, which may lead to an ageing phenomenon. Hydrophobic surface group may reduce the water adsorption in nanocomposites
On the use of colour reflectivity plots to monitor the structure of the troposphere and stratosphere
The radar reflectivity, defined as the range squared corrected power of VHF radar echoes, can be used to monitor and study the temporal development of inversion layer, frontal boundaries and convective turbulence. From typical featurs of upward or downward motion of reflectivity structures, the advection/convection of cold and warm air can be predicted. High resolution color plots appear to be useful to trace and to study the life history of these structures, particularly their persistency, descent and ascent. These displays allow an immediate determination of the tropopause height as well as the determination of the tropopause structure. The life history of warm fronts, cold fronts, and occlusions can be traced, and these reflectivity plots allow detection of even very weak events which cannot be seen in the traditional meteorological data sets. The life history of convective turbulence, particular evolving from the planetary boundary layer, can be tracked quite easily. Its development into strong convection reaching the middle troposphere can be followed and predicted
The first operation and results of the Chung-Li VHF radar
The Chung-Li Very High Frequency (VHF) radar is used in the dual-mode operations, applying Doppler beam-swinging as well as the spaced-antenna-drift method. The design of the VHF radar is examined. Results of performance tests are discussed
Spin Hall effects for cold atoms in a light induced gauge potential
We propose an experimental scheme to observe spin Hall effects with cold
atoms in a light induced gauge potential. Under an appropriate configuration,
the cold atoms moving in a spatially varying laser field experience an
effective spin-dependent gauge potential. Through numerical simulation, we
demonstrate that such a gauge field leads to observable spin Hall currents
under realistic conditions. We also discuss the quantum spin Hall state in an
optical lattice.Comment: 4 pages; The published versio
Topological meaning of Z numbers in time reversal invariant systems
We show that the Z invariant, which classifies the topological properties
of time reversal invariant insulators, has deep relationship with the global
anomaly. Although the second Chern number is the basic topological invariant
characterizing time reversal systems, we show that the relative phase between
the Kramers doublet reduces the topological quantum number Z to Z.Comment: 4 pages, typos correcte
X-ray Properties of Radio-Selected Dual Active Galactic Nuclei
Merger simulations predict that tidally induced gas inflows can trigger
kpc-scale dual active galactic nuclei (dAGN) in heavily obscured environments.
Previously with the Very Large Array, we have confirmed four dAGN with
redshifts between and projected separations between 4.3 and
9.2 kpc in the SDSS Stripe 82 field. Here, we present X-ray
observations that spatially resolve these dAGN and compare their
multi-wavelength properties to those of single AGN from the literature. We
detect X-ray emission from six of the individual merger components and obtain
upper limits for the remaining two. Combined with previous radio and optical
observations, we find that our dAGN have properties similar to nearby
low-luminosity AGN, and they agree well with the black hole fundamental plane
relation. There are three AGN-dominated X-ray sources, whose X-ray
hardness-ratio derived column densities show that two are unobscured and one is
obscured. The low obscured fraction suggests these dAGN are no more obscured
than single AGN, in contrast to the predictions from simulations. These three
sources show an apparent X-ray deficit compared to their mid-infrared continuum
and optical [OIII] line luminosities, suggesting higher levels of obscuration,
in tension with the hardness-ratio derived column densities. Enhanced
mid-infrared and [OIII] luminosities from star formation may explain this
deficit. There is ambiguity in the level of obscuration for the remaining five
components since their hardness ratios may be affected by non-nuclear X-ray
emissions, or are undetected altogether. They require further observations to
be fully characterized.Comment: 11 pages, 5 figures, Accepted for publication in the Astrophysical
Journa
Polymeric forms of carbon in dense lithium carbide
The immense interest in carbon nanomaterials continues to stimulate intense
research activities aimed to realize carbon nanowires, since linear chains of
carbon atoms are expected to display novel and technologically relevant
optical, electrical and mechanical properties. Although various allotropes of
carbon (e.g., diamond, nanotubes, graphene, etc.) are among the best known
materials, it remains challenging to stabilize carbon in the one-dimensional
form because of the difficulty to suitably saturate the dangling bonds of
carbon. Here, we show through first-principles calculations that ordered
polymeric carbon chains can be stabilized in solid LiC under moderate
pressure. This pressure-induced phase (above 5 GPa) consists of parallel arrays
of twofold zigzag carbon chains embedded in lithium cages, which display a
metallic character due to the formation of partially occupied carbon lone-pair
states in \emph{sp}-like hybrids. It is found that this phase remains the
most favorable one in a wide range of pressure. At extreme pressure (larger the
215 GPa) a structural and electronic phase transition towards an insulating
single-bonded threefold-coordinated carbon network is predicted.Comment: 10 pages, 6 figure
Electrical spin protection and manipulation via gate-locked spin-orbit fields
The spin-orbit (SO) interaction couples electron spin and momentum via a
relativistic, effective magnetic field. While conveniently facilitating
coherent spin manipulation in semiconductors, the SO interaction also
inherently causes spin relaxation. A unique situation arises when the Rashba
and Dresselhaus SO fields are matched, strongly protecting spins from
relaxation, as recently demonstrated. Quantum computation and spintronics
devices such as the paradigmatic spin transistor could vastly benefit if such
spin protection could be expanded from a single point into a broad range
accessible with in-situ gate-control, making possible tunable SO rotations
under protection from relaxation. Here, we demonstrate broad, independent
control of all relevant SO fields in GaAs quantum wells, allowing us to tune
the Rashba and Dresselhaus SO fields while keeping both locked to each other
using gate voltages. Thus, we can electrically control and simultaneously
protect the spin. Our experiments employ quantum interference corrections to
electrical conductivity as a sensitive probe of SO coupling. Finally, we
combine transport data with numerical SO simulations to precisely quantify all
SO terms.Comment: 5 pages, 4 figures (color), plus supplementary information 18 pages,
8 figures (color) as ancillary arXiv pd
Estimating Form Factors of and their Applications to Semi-leptonic and Non-leptonic Decays
and weak transition
form factors are estimated for the whole physical region with a method based on
an instantaneous approximated Mandelstam formulation of transition matrix
elements and the instantaneous Bethe-Salpeter equation. We apply the estimated
form factors to branching ratios, CP asymmetries and polarization fractions of
non-leptonic decays within the factorization approximation. And we study the
non-factorizable effects and annihilation contributions with the perturbative
QCD approach. The branching ratios of semi-leptonic decays are also evaluated. We show that the calculated
decay rates agree well with the available experimental data. The longitudinal
polarization fraction of decays are when
denotes a light meson, and are when denotes a
() meson.Comment: Final version published in J Phys. G 39 (2012) 045002 (Title also
changed
- …