216 research outputs found

    Assessing the Stroke-Specific Quality of Life for Outcome Measurement in Stroke Rehabilitation: Minimal Detectable Change and Clinically Important Difference

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>This study was conducted to establish the minimal detectable change (MDC) and clinically important differences (CIDs) of the physical category of the Stroke-Specific Quality of Life Scale in patients with stroke.</p> <p>Methods</p> <p>MDC and CIDs scores were calculated from the data of 74 participants enrolled in randomized controlled trials investigating the effects of two rehabilitation programs in patients with stroke. These participants received treatments for 3 weeks and underwent clinical assessment before and after treatment. To obtain test-retest reliability for calculating MDC, another 25 patients with chronic stroke were recruited. The MDC was calculated from the standard error of measurement (SEM) to indicate a real change with 95% confidence for individual patients (MDC<sub>95</sub>). Distribution-based and anchor-based methods were adopted to triangulate the ranges of minimal CIDs. The percentage of scale width was calculated by dividing the MDC and CIDs by the total score range of each physical category. The percentage of patients exceeding MDC<sub>95 </sub>and minimal CIDs was also reported.</p> <p>Results</p> <p>The MDC<sub>95 </sub>of the mobility, self-care, and upper extremity (UE) function subscales were 5.9, 4.0, and 5.3 respectively. The minimal CID ranges for these 3 subscales were 1.5 to 2.4, 1.2 to 1.9, and 1.2 to 1.8. The percentage of patients exceeding MDC<sub>95 </sub>and minimal CIDs of the mobility, self-care, and UE function subscales were 9.5% to 28.4%, 6.8% to 28.4%, and 12.2% to 33.8%, respectively.</p> <p>Conclusions</p> <p>The change score of an individual patient has to reach 5.9, 4.0, and 5.3 on the 3 subscales to indicate a true change. The mean change scores of a group of patients with stroke on these subscales should reach the lower bound of CID ranges of 1.5 (6.3% scale width), 1.2 (6.0% scale width), and 1.2 (6.0% scale width) to be regarded as clinically important change. This information may facilitate interpretations of patient-reported outcomes after stroke rehabilitation. Future research is warranted to validate these findings.</p

    Comprehensive linkage and linkage heterogeneity analysis of 4344 sibling pairs affected with hypertension from the Family Blood Pressure Program

    Full text link
    Linkage analyses of complex, multifactorial traits and diseases, such as essential hypertension, have been difficult to interpret and reconcile. Many published studies provide evidence suggesting that different genes and genomic regions influence hypertension, but knowing which of these studies reflect true positive results is challenging. The reasons for this include the diversity of analytical methods used across these studies, the different samples and sample sizes in each study, and the complicated biological underpinnings of hypertension. We have undertaken a comprehensive linkage analysis of 371 autosomal microsatellite markers genotyped on 4,334 sibling pairs affected with hypertension from five ethnic groups sampled from 13 different field centers associated with the Family Blood Pressure Program (FBPP). We used a single analytical technique known to be robust to interpretive problems associated with a lack of completely informative markers to assess evidence for linkage to hypertension both within and across the ethnic groups and field centers. We find evidence for linkage to a number of genomic regions, with the most compelling evidence from analyses that combine data across field center and ethnic groups (e.g., chromosomes 2 and 9). We also pursued linkage analyses that accommodate locus heterogeneity, which is known to plague the identification of disease susceptibility loci in linkage studies of complex diseases. We find evidence for linkage heterogeneity on chromosomes 2 and 17. Ultimately our results suggest that evidence for linkage heterogeneity can only be detected with large sample sizes, such as the FBPP, which is consistent with theoretical sample size calculations. Genet. Epidemiol . 2007. © 2007 Wiley-Liss, Inc.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/56011/1/20202_ftp.pd

    NOTCH2 in breast cancer: association of SNP rs11249433 with gene expression in ER-positive breast tumors without TP53 mutations

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>A recent genome-wide association study (GWAS) has identified a single nucleotide polymorphism (SNP) rs11249433 in the 1p11.2 region as a novel genetic risk factor for breast cancer, and this association was stronger in patients with estrogen receptor (ER)<sup>+ </sup>versus ER<sup>- </sup>cancer.</p> <p>Results</p> <p>We found association between SNP rs11249433 and expression of the <it>NOTCH2 </it>gene located in the 1p11.2 region. Examined in 180 breast tumors, the expression of <it>NOTCH2 </it>was found to be lowest in tumors with <it>TP53 </it>mutations and highest in <it>TP53 </it>wild-type/ER<sup>+ </sup>tumors (p = 0.0059). In the latter group, the <it>NOTCH2 </it>expression was particularly increased in carriers of the risk genotypes (AG/GG) of rs11249433 when compared to the non-risk AA genotype (p = 0.0062). Similar association between <it>NOTCH2 </it>expression and rs11249433 was observed in 60 samples of purified monocytes from healthy controls (p = 0.015), but not in total blood samples from 302 breast cancer patients and 76 normal breast tissue samples. We also identified the first possible dominant-negative form of <it>NOTCH2</it>, a truncated version of <it>NOTCH2 </it>consisting of only the extracellular domain.</p> <p>Conclusion</p> <p>This is the first study to show that the expression of <it>NOTCH2 </it>differs in subgroups of breast tumors and by genotypes of the breast cancer-associated SNP rs11249433. The NOTCH pathway has key functions in stem cell differentiation of ER<sup>+ </sup>luminal cells in the breast. Therefore, increased expression of <it>NOTCH2 </it>in carriers of rs11249433 may promote development of ER<sup>+ </sup>luminal tumors. Further studies are needed to investigate possible mechanisms of regulation of <it>NOTCH2 </it>expression by rs11249433 and the role of <it>NOTCH2 </it>splicing forms in breast cancer development.</p

    DNA Double-Strand Break Repair Genes and Oxidative Damage in Brain Metastasis of Breast Cancer

    Get PDF
    Background Breast cancer frequently metastasizes to the brain, colonizing a neuro-inflammatory microenvironment. The molecular pathways facilitating this colonization remain poorly understood. Methods Expression profiling of 23 matched sets of human resected brain metastases and primary breast tumors by two-sided paired t test was performed to identify brain metastasis–specific genes. The implicated DNA repair genes BARD1 and RAD51 were modulated in human (MDA-MB-231-BR) and murine (4T1-BR) brain-tropic breast cancer cell lines by lentiviral transduction of cDNA or short hairpin RNA (shRNA) coding sequences. Their functional contribution to brain metastasis development was evaluated in mouse xenograft models (n = 10 mice per group). Results Human brain metastases overexpressed BARD1 and RAD51 compared with either matched primary tumors (1.74-fold, P < .001; 1.46-fold, P < .001, respectively) or unlinked systemic metastases (1.49-fold, P = .01; 1.44-fold, P = .008, respectively). Overexpression of either gene in MDA-MB-231-BR cells increased brain metastases by threefold to fourfold after intracardiac injections, but not lung metastases upon tail-vein injections. In 4T1-BR cells, shRNA-mediated RAD51 knockdown reduced brain metastases by 2.5-fold without affecting lung metastasis development. In vitro, BARD1- and RAD51-overexpressing cells showed reduced genomic instability but only exhibited growth and colonization phenotypes upon DNA damage induction. Reactive oxygen species were present in tumor cells and elevated in the metastatic neuro-inflammatory microenvironment and could provide an endogenous source of genotoxic stress. Tempol, a brain-permeable oxygen radical scavenger suppressed brain metastasis promotion induced by BARD1 and RAD51 overexpression. Conclusions BARD1 and RAD51 are frequently overexpressed in brain metastases from breast cancer and may constitute a mechanism to overcome reactive oxygen species–mediated genotoxic stress in the metastatic brain

    Switchgrass

    Get PDF
    Switchgrass (Panicum virgatum L.) is a perennialwarm-season grass native to the grasslands of North America, is a model perennial grass for bioenergy, and is the most advanced herbaceous perennial bioenergy feedstock. Best management practices have been developed for switchgrass bioenergy production for the agroecoregions to which it is adapted. Field production of switchgrass likely will occur on cropland that is marginally productive for row crops, similar to land that was enrolled in the Conservation Reserve Program. Long-term, field-scale research demonstrates that switchgrass for bioenergy is productive, profitable for the farmer, and protective of the environment. Switchgrass was selected by the Bioenergy Feedstock Development Program (BFDP) at the U.S. Department of Energy (DoE) as a model herbaceous species because of its potential to simultaneously meet energy demands and address global climate change [1]. It is a perennial, warm-season (C4) grass native to North America that is broadly adapted throughout the United States and is found in every state east of the Rocky Mountains [2]. Like many perennial C4 grasses, switchgrass is highly tolerant to abiotic stresses such as drought, temperature extremes, and salinity. For that reason, it is being recommended for biomass production on marginally productive cropland where it would have minimal land use competition with commercial food crops

    Proximity-Based Differential Single-Cell Analysis of the Niche to Identify Stem/Progenitor Cell Regulators

    Get PDF
    Physiological stem cell function is regulated by secreted factors produced by niche cells. In this study, we describe an unbiased approach based on differential single-cell gene expression analysis of mesenchymal osteolineage cells close to and further removed from hematopoietic stem/progenitor cells to identify candidate niche factors. Mesenchymal cells displayed distinct molecular profiles based on their relative location. Amongst the genes which were preferentially expressed in proximal cells, we functionally examined three secreted or cell surface molecules not previously connected to HSPC biology: the secreted RNase Angiogenin, the cytokine IL18 and the adhesion molecule Embigin and discovered that all of these factors are HSPC quiescence regulators. Our proximity-based differential single cell approach therefore reveals molecular heterogeneity within niche cells and can be used to identify novel extrinsic stem/progenitor cell regulators. Similar approaches could also be applied to other stem cell/niche pairs to advance understanding of microenvironmental regulation of stem cell function

    Diversity and dispersal of a ubiquitous protein family: acyl-CoA dehydrogenases

    Get PDF
    Acyl-CoA dehydrogenases (ACADs), which are key enzymes in fatty acid and amino acid catabolism, form a large, pan-taxonomic protein family with at least 13 distinct subfamilies. Yet most reported ACAD members have no subfamily assigned, and little is known about the taxonomic distribution and evolution of the subfamilies. In completely sequenced genomes from approximately 210 species (eukaryotes, bacteria and archaea), we detect ACAD subfamilies by rigorous ortholog identification combining sequence similarity search with phylogeny. We then construct taxonomic subfamily-distribution profiles and build phylogenetic trees with orthologous proteins. Subfamily profiles provide unparalleled insight into the organisms’ energy sources based on genome sequence alone and further predict enzyme substrate specificity, thus generating explicit working hypotheses for targeted biochemical experimentation. Eukaryotic ACAD subfamilies are traditionally considered as mitochondrial proteins, but we found evidence that in fungi one subfamily is located in peroxisomes and participates in a distinct β-oxidation pathway. Finally, we discern horizontal transfer, duplication, loss and secondary acquisition of ACAD genes during evolution of this family. Through these unorthodox expansion strategies, the ACAD family is proficient in utilizing a large range of fatty acids and amino acids—strategies that could have shaped the evolutionary history of many other ancient protein families

    The Gut Microbiome Contributes to a Substantial Proportion of the Variation in Blood Lipids

    Get PDF
    Rationale: Evidence suggests that the gut microbiome is involved in the development of cardiovascular disease, with the host–microbe interaction regulating immune and metabolic pathways. However, there was no firm evidence for associations between microbiota and metabolic risk factors for cardiovascular disease from large-scale studies in humans. In particular, there was no strong evidence for association between cardiovascular disease and aberrant blood lipid levels. Objectives: To identify intestinal bacteria taxa, whose proportions correlate with body mass index and lipid levels, and to determine whether lipid variance can be explained by microbiota relative to age, sex, and host genetics. Methods and Results: We studied 893 subjects from the LifeLines-DEEP population cohort. After correcting for age and sex, we identified 34 bacterial taxa associated with body mass index and blood lipids; most are novel associations. Cross-validation analysis revealed that microbiota explain 4.5% of the variance in body mass index, 6% in triglycerides, and 4% in high-density lipoproteins, independent of age, sex, and genetic risk factors. A novel risk model, including the gut microbiome explained ≤25.9% of high-density lipoprotein variance, significantly outperforming the risk model without microbiome. Strikingly, the microbiome had little effect on low-density lipoproteins or total cholesterol. Conclusions: Our studies suggest that the gut microbiome may play an important role in the variation in body mass index and blood lipid levels, independent of age, sex, and host genetics. Our findings support the potential of therapies altering the gut microbiome to control body mass, triglycerides, and high-density lipoproteins

    Deficits in Inhibitory Control in Smokers During a Go/NoGo Task: An Investigation Using Event-Related Brain Potentials

    Get PDF
    Contains fulltext : 119553.pdf (publisher's version ) (Open Access)Introduction: The role of inhibitory control in addictive behaviors is highlighted in several models of addictive behaviors. Although reduced inhibitory control has been observed in addictive behaviors, it is inconclusive whether this is evident in smokers. Furthermore, it has been proposed that drug abuse individuals with poor response inhibition may experience greater difficulties not consuming substances in the presence of drug cues. The major aim of the current study was to provide electrophysiological evidence for reduced inhibitory control in smokers and to investigate whether this is more pronounced during smoking cue exposure. Methods: Participants (19 smokers and 20 non-smoking controls) performed a smoking Go/NoGo task. Behavioral accuracy and amplitudes of the N2 and P3 event-related potential (ERP), both reflecting aspects of response inhibition, were the main variables of interest. Results: Reduced NoGo N2 amplitudes in smokers relative to controls were accompanied by decreased task performance, whereas no differences between groups were found in P3 amplitudes. This was found to represent a general lack of inhibition in smokers, and not dependent on the presence of smoking cues. Conclusions: The current results suggest that smokers have difficulties with response inhibition, which is an important finding that eventually can be implemented in smoking cessation programs. More research is needed to clarify the exact role of cue exposure on response inhibition.7 p
    corecore