35 research outputs found

    Modelling Hot Spots of Soil Loss by Wind Erosion (SoLoWind) in Western Saxony, Germany

    Get PDF
    Land Degradation and Development published by John Wiley & Sons, Ltd. While it needs yet to be assessed whether or not wind erosion in Western Saxony is a major point of concern regarding land degradation and fertility, it has already been recognized that considerable off-site effects of wind erosion in the adjacent regions of Saxony-Anhalt and Brandenburg are connected to the spread of herbicides, pesticides and dust. So far, no wind erosion assessment for Western Saxony, Germany, exists. The wind erosion model previously applied for Germany (DIN standard 19706) is considering neither changes in wind direction over time nor influences of field size. This study aims to provide a first assessment of wind erosion for Western Saxony by extending the existing DIN model to a multidirectional model on soil loss by wind (SoLoWind) with new controlling factors (changing wind directions, soil cover, mean field length and mean protection zone) combined by fuzzy logic. SoLoWind is used for a local off-site effect evaluation in combination with high-resolution wind speed and wind direction data at a section of the highway A72. The model attributes 3·6% of the arable fields in Western Saxony to the very-high-wind erosion risk class. A relationship between larger fields (greater than 116 ha) and higher proportions (51·7%) of very-high-wind erosion risk can be observed. Sections of the highway A72 might be under high risk according to the modelled off-site effects of wind erosion. The presented applications showed the potential of SoLoWind to support and consult management for protection measures on a regional scale. © 2016 The Authors. Land Degradation and Development published by John Wiley & Sons, Ltd.The authors would like to thank JĂŒrgen Heinrich and Gudrun Mayer for the technical revision of the model conception and the German Weather Service, the Saxon State Office for the Environment, Agriculture and Geology, the Saxon State Office for Road Construction and Traffic, the Saxon State Ministry of the Environment and Agriculture, the Saxon State Spatial Data and Land Survey Corporation, the Saxon Road Maintenance Depots, OpenStreetMap and the National Aeronautics and Space Administration for providing the datasets. We would also like to thank three anonymous reviewers for helpful comments.info:eu-repo/semantics/publishedVersio

    Recent advances in our understanding of dust source emission processes

    No full text
    The dust cycle can play an important role in the land–atmosphere–ocean system through interaction with biogeochemical cycles and direct and indirect radiative forcing of the atmosphere. One of the limiting factors for existing global models of dust transport, atmospheric processing and deposition is the quality and availability of data to allow evaluation and validation of emission schemes against in situ data from source regions. This review provides a critical overview of recent studies of aeolian processes from within or on dust sources, and focuses on studies dealing with retrieval of dust emission data, quantification of the contribution and variability of dust emissions from specific landforms, and the use of remote sensing data to reconcile dust storm inventories by direct comparison to dust source geomorphology. These case studies highlight significant advances in both field measurement and regional understanding of important components of the dust cycle derived through use of remote sensing data. However, recent research also demonstrates that most source regions exhibit significant spatial and temporal heterogeneity in dust emissions from candidate geomorphologies, which has direct implications for strategies aimed at inclusion of dust emission schemes at a scale relevant to climate models. To accommodate these factors and other significant scaling issues, additional research is needed to increase our quantification of a wider range of dust source types and geomorphological contexts over longer time periods

    Surface and Airborne Arsenic Concentrations in a Recreational Site near Las Vegas, Nevada, USA

    Full text link
    Elevated concentrations of arsenic, up to 7058 ÎŒg g-1 in topsoil and bedrock, and more than 0.03 ÎŒg m-3 in air on a 2-week basis, were measured in the Nellis Dunes Recreation Area (NDRA), a very popular off-road area near Las Vegas, Nevada, USA. The elevated arsenic concentrations in the topsoil and bedrock are correlated to outcrops of yellow sandstone belonging to the Muddy Creek Formation (≈ 10 to 4 Ma) and to faults crossing the area. Mineralized fluids moved to the surface through the faults and deposited the arsenic. A technique was developed to calculate airborne arsenic concentrations from the arsenic content in the topsoil. The technique was tested by comparing calculated with measured concentrations at 34 locations in the NDRA, for 3 periods of 2 weeks each. We then applied it to calculate airborne arsenic concentrations for more than 500 locations all over the NDRA. The highest airborne arsenic concentrations occur over sand dunes and other zones with a surficial layer of aeolian sand. Ironically these areas show the lowest levels of arsenic in the topsoil. However, they are highly susceptible to wind erosion and emit very large amounts of sand and dust during episodes of strong winds, thereby also emitting much arsenic. Elsewhere in the NDRA, in areas not or only very slightly affected by wind erosion, airborne arsenic levels equal the background level for airborne arsenic in the USA, approximately 0.0004 ÎŒg m-3. The results of this study are important because the NDRA is visited by more than 300,000 people annually
    corecore