7,736 research outputs found

    Why are plant–soil feedbacks so unpredictable, and what to do about it?

    Get PDF
    1.The study of feedbacks between plants and soils (plant‐soil feedbacks; PSFs) is receiving increased attention. However, PSFs have been mostly studied in isolation of abiotic and biotic drivers that could affect their strength and direction. This is problematic because it has led to limited predictive power of PSFs in ‘the real world’, leaving large knowledge gaps in our ability to predict how PSFs contribute to ecosystem processes and functions. 2.Here, we present a synthetic framework to elucidate how abiotic and biotic drivers affect PSFs. We focus on two key abiotic drivers (temperature and soil moisture) and two key biotic drivers (aboveground plant consumers and belowground top‐down control of pathogens and mutualists). We focus on these factors because they are known drivers of plants and soil organisms and the ecosystem processes they control, and hence would be expected to strongly influence PSFs. 3.Our framework describes the proposed mechanisms behind these drivers and explores their effects on PSFs. We demonstrate the impacts of these drivers using the fast‐ to slow‐growing plant economics spectrum. We use this well‐established paradigm because plants on opposite ends of this spectrum differ in their relationships with soil biota and have developed contrasting strategies to cope with abiotic and biotic environmental conditions. 4.Finally, we present suggestions for improved experimental designs and scientific inference that will capture and elucidate the influence of above‐ and belowground drivers on PSFs. By establishing the role of abiotic and biotic drivers of PSFs, we will be able to make more robust predictions of how PSFs impact on ecosystem function

    Quantum walks of correlated photon pairs in two-dimensional waveguide arrays

    Get PDF
    We demonstrate quantum walks of correlated photons in a 2D network of directly laser written waveguides coupled in a 'swiss cross' arrangement. The correlated detection events show high-visibility quantum interference and unique composite behaviour: strong correlation and independence of the quantum walkers, between and within the planes of the cross. Violations of a classically defined inequality, for photons injected in the same plane and in orthogonal planes, reveal non-classical behaviour in a non-planar structure.Comment: 5 pages, 5 figure

    The Power Spectrum, Bias Evolution, and the Spatial Three-Point Correlation Function

    Full text link
    We calculate perturbatively the normalized spatial skewness, S3S_3, and full three-point correlation function (3PCF), ζ\zeta, induced by gravitational instability of Gaussian primordial fluctuations for a biased tracer-mass distribution in flat and open cold-dark-matter (CDM) models. We take into account the dependence on the shape and evolution of the CDM power spectrum, and allow the bias to be nonlinear and/or evolving in time, using an extension of Fry's (1996) bias-evolution model. We derive a scale-dependent, leading-order correction to the standard perturbative expression for S3S_3 in the case of nonlinear biasing, as defined for the unsmoothed galaxy and dark-matter fields, and find that this correction becomes large when probing positive effective power-spectrum indices. This term implies that the inferred nonlinear-bias parameter, as usually defined in terms of the smoothed density fields, might depend on the chosen smoothing scale. In general, we find that the dependence of S3S_3 on the biasing scheme can substantially outweigh that on the adopted cosmology. We demonstrate that the normalized 3PCF, QQ, is an ill-behaved quantity, and instead investigate QVQ_V, the variance-normalized 3PCF. The configuration dependence of QVQ_V shows similarly strong sensitivities to the bias scheme as S3S_3, but also exhibits significant dependence on the form of the CDM power spectrum. Though the degeneracy of S3S_3 with respect to the cosmological parameters and constant linear- and nonlinear-bias parameters can be broken by the full configuration dependence of QVQ_V, neither statistic can distinguish well between evolving and non-evolving bias scenarios. We show that this can be resolved, in principle, by considering the redshift dependence of ζ\zeta.Comment: 41 pages, including 12 Figures. To appear in The Astrophysical Journal, Vol. 521, #

    Probing Primordial Non-Gaussianity with Large-Scale Structure

    Full text link
    We consider primordial non-Gaussianity due to quadratic corrections in the gravitational potential parametrized by a non-linear coupling parameter fnl. We study constraints on fnl from measurements of the galaxy bispectrum in redshift surveys. Using estimates for idealized survey geometries of the 2dF and SDSS surveys and realistic ones from SDSS mock catalogs, we show that it is possible to probe |fnl|~100, after marginalization over bias parameters. We apply our methods to the galaxy bispectrum measured from the PSCz survey, and obtain a 2sigma-constraint |fnl|< 1800. We estimate that an all sky redshift survey up to z~1 can probe |fnl|~1. We also consider the use of cluster abundance to constrain fnl and find that in order to be sensitive to |fnl|~100, cluster masses need to be determined with an accuracy of a few percent, assuming perfect knowledge of the mass function and cosmological parameters.Comment: 15 pages, 7 figure

    Improving the mass determination of Galactic Cepheids

    Get PDF
    We have selected a sample of Galactic Cepheids for which accurate estimates of radii, distances, and photometric parameters are available. The comparison between their pulsation masses, based on new Period-Mass-Radius (PMR) relations, and their evolutionary masses, based on both optical and NIR Color-Magnitude (CM) diagrams, suggests that pulsation masses are on average of the order of 10% smaller than the evolutionary masses. Current pulsation masses show, at fixed radius, a strongly reduced dispersion when compared with values published in literature.The increased precision in the pulsation masses is due to the fact that our predicted PMR relations based on nonlinear, convective Cepheid models present smaller standard deviations than PMR relations based on linear models. At the same time, the empirical radii of our Cepheid sample are typically accurate at the 5% level. Our evolutionary mass determinations are based on stellar models constructed by neglecting the effect of mass-loss during the He burning phase. Therefore, the difference between pulsation and evolutionary masses could be intrinsic and does not necessarily imply a problem with either evolutionary and/or nonlinear pulsation models. The marginal evidence of a trend in the difference between evolutionary and pulsation masses when moving from short to long-period Cepheids is also briefly discussed. The main finding of our investigation is that the long-standing Cepheid mass discrepancy seems now resolved at the 10% level either if account for canonical or mild convective core overshooting evolutionary models.Comment: 14 pages, 4 postscript figures, accepted for publication on ApJ Letter

    Hyperextended Cosmological Perturbation Theory: Predicting Non-linear Clustering Amplitudes

    Get PDF
    We consider the long-standing problem of predicting the hierarchical clustering amplitudes SpS_p in the strongly non-linear regime of gravitational evolution. N-body results for the non-linear evolution of the bispectrum (the Fourier transform of the three-point density correlation function) suggest a physically motivated ansatz that yields the strongly non-linear behavior of the skewness, S3S_3, starting from leading-order perturbation theory. When generalized to higher-order (p>3p>3) polyspectra or correlation functions, this ansatz leads to a good description of non-linear amplitudes in the strongly non-linear regime for both scale-free and cold dark matter models. Furthermore, these results allow us to provide a general fitting formula for the non-linear evolution of the bispectrum that interpolates between the weakly and strongly non-linear regimes, analogous to previous expressions for the power spectrum.Comment: 20 pages, 6 figures. Final version accepted by ApJ. Includes new paragraphs on factorizable hierarchical models and agreement of HEPT with the excursion set model for white-noise Gaussian fluctuation

    Tip-Leakage Vortex Inception on a Ducted Rotor

    Get PDF
    The tip-leakage vortex occurring on a ducted rotor was examined using both three component Laser Doppler Velocimetry (LDV) and planar Particle Imaging Velocimetry (PIV). The vortex strength and core size were examined for different vortex cross sections downstream of the blade trailing edge. The variability of these quantities are observed with PIV and the average quantities are compared between LDV and PIV. Developed cavitation is also examined for the leakage vortex. The implication of vortex variability on cavitation inception is discussed

    Statistics of Cosmological Inhomogeneities

    Full text link
    This contribution to the Proceedings is based on the talk given at the Conference on Birth of the Universe and Fundamental Physics, Rome, May 18-21, 1994. Some selected topics of the subject are reviewed: Models of Primordial Fluctuations; Reconstruction of the Cosmological Density Probability Distribution Function (PDF) from Cumulants; PDFs from the Zel'dovich Approximation and from Summarizing Perturbation Series; Fitting by the Log-normal Distribution.Comment: 11 pages, 3 figures (available from the author), LaTe

    The Role of Plant Litter in Driving Plant-Soil Feedbacks

    Get PDF
    Most studies focusing on plant-soil feedbacks (PSFs) have considered direct interactions between plants, abiotic conditions (e. g., soil nutrients) and rhizosphere communities (e.g., pathogens, mutualists). However, few studies have addressed the role of indirect interactions mediated by plant litter inputs. This is problematic because it has left a major gap in our understanding of PSFs in natural ecosystems, where plant litter is a key component of feedback effects. Here, we propose a new conceptual framework that integrates rhizosphere- and litter-mediated PSF effects. Our framework provides insights into the relative contribution of direct effects mediated by interactions between plants and soil rhizosphere organisms, and indirect effects between plants and decomposer organisms mediated by plant root and shoot litter. We distinguish between three pathways through which senesced root and shoot litter may influence PSFs. Specifically, we examine: (1) physical effects of litter (layer) traits on seed germination, soil structure, and plant growth; (2) chemical effects of litter on concentrations of soil nutrients and secondary metabolites (e.g., allelopathic chemicals); and (3) biotic effects of saprotrophic soil communities that can perform different functional roles in the soil food web, or that may have specialized interactions with litter types, thereby altering soil nutrient cycling. We assess the role of litter in PSF effects via physical, chemical and biotic pathways to address how litter-mediated feedbacks may play out relative to, and in interaction with, feedbacks mediated through the plant rhizosphere. We also present one of the first experimental studies to show the occurrence and species-specificity of litter-mediated feedbacks and we identify critical research gaps. By formally incorporating the plant-litter feedback pathway into PSF experiments, we will further our understanding of PSFs under natural conditions
    • 

    corecore