30 research outputs found

    Color Mutations Alter the Biochemical Composition in the San Marzano Tomato Fruit

    Get PDF
    San Marzano (SM) is a traditional Italian landrace characterized by red elongated fruits, originating in the province of Naples (Italy) and cultivated worldwide. Three mutations, yellow flesh (r), green flesh (gf) and colorless fruit epidermis (y) were introduced into SM by backcross and the resulting introgression lines (ILs) produced the expected yellow, brown and pink fruit variants. In addition, ILs carrying double combinations of those mutations were obtained. The six ILs plus the SM reference were analyzed for volatile (VOC), non-polar (NP) and polar (P) metabolites. Sixty-eight VOCs were identified, and several differences evidenced in the ILs; overall gf showed epistasis over r and y and r over y. Analysis of the NP component identified 54 metabolites; variation in early carotenoids (up to lycopene) and chlorophylls characterized respectively the ILs containing r and gf. In addition, compounds belonging to the quinone and xanthophyll classes were present in genotypes carrying the r mutation at levels higher than SM. Finally, the analysis of 129 P metabolites evidenced different levels of vitamins, amino acids, lipids and phenylpropanoids in the ILs. A correlation network approach was used to investigate metabolite–metabolite relationships in the mutant lines. Altogether these differences potentially modified the hedonistic and nutritional value of the berry. In summary, single and combined mutations in gf, r and y generated interesting visual and compositional diversity in the SM landrace, while maintaining its original typolog

    Metabolomic Analysis Reveals Changes in Preimplantation Embryos Following Fresh or Vitrified Transfer

    Full text link
    [EN] Although assisted reproduction technologies (ARTs) are recognised as safe, and most of the offspring seem apparently healthy, there is clear evidence that ARTs are associated with changes in the embryo's developmental trajectory, which incur physiological consequences during the prenatal and postnatal stages of life. The present study aimed to address the influence of early (day-3 embryos) embryo transfer and cryopreservation on embryo survival, size, and metabolome at the preimplantation stage (day-6 embryos). To this end, fresh-transferred (FT) and vitrified-transferred (VT) embryos were compared using naturally-conceived (NC) embryos as a control reference. The results show that as in vitro manipulation was increased (NC < FT < VT), both embryo survival rate (0.91 +/- 0.02, 0.78 +/- 0.05 and 0.63 +/- 0.05, for NC, FT, and VT groups, respectively) and embryo size (3.21 +/- 0.49 mm, 2.15 +/- 0.51 mm, 1.76 +/- 0.46 mm of diameter for NC, FT, and VT groups, respectively) were significantly decreased. Moreover, an unbiased metabolomics analysis showed overall down-accumulation in 40 metabolites among the three experimental groups, with embryo transfer and embryo cryopreservation procedures both exerting a cumulative effect. In this regard, targeted metabolomics findings revealed a significant reduction in some metabolites involved in metabolic pathways, such as the Krebs cycle, amino acids, unsaturated fatty acids, and arachidonic acid metabolisms. Altogether, these findings highlight a synergistic effect between the embryo transfer and vitrification procedures in preimplantation embryos. However, the ex vivo manipulation during embryo transfer seemed to be the major trigger of the embryonic changes, as the deviations added by the vitrification process were relatively smaller.This research was funded by Conselleria d'Educacio, Investigacio, Cultura i Esport, Spain, grant number AICO/2019/272. Ximo Garcia-Dominguez was supported by a research grant from the Ministry of Economy, Industry and Competitiveness of Spain (BES-2015-072429).Garcia-Dominguez, X.; Diretto, G.; Frusciante, S.; Vicente Antón, JS.; Marco-Jiménez, F. (2020). Metabolomic Analysis Reveals Changes in Preimplantation Embryos Following Fresh or Vitrified Transfer. International Journal of Molecular Sciences. 21(19):1-14. https://doi.org/10.3390/ijms21197116S1142119Rizos, D., Maillo, V., Sánchez-Calabuig, M.-J., & Lonergan, P. (2017). The Consequences of Maternal-Embryonic Cross Talk During the Periconception Period on Subsequent Embryonic Development. Advances in Experimental Medicine and Biology, 69-86. doi:10.1007/978-3-319-62414-3_4Avilés, M., Gutiérrez-Adán, A., & Coy, P. (2010). Oviductal secretions: will they be key factors for the future ARTs? MHR: Basic science of reproductive medicine, 16(12), 896-906. doi:10.1093/molehr/gaq056Li, S., & Winuthayanon, W. (2017). Oviduct: roles in fertilization and early embryo development. Journal of Endocrinology, 232(1), R1-R26. doi:10.1530/joe-16-0302Wale, P. L., & Gardner, D. K. (2015). The effects of chemical and physical factors on mammalian embryo culture and their importance for the practice of assisted human reproduction. Human Reproduction Update, 22(1), 2-22. doi:10.1093/humupd/dmv034Fleming, T. P., Watkins, A. J., Velazquez, M. A., Mathers, J. C., Prentice, A. M., Stephenson, J., … Godfrey, K. M. (2018). Origins of lifetime health around the time of conception: causes and consequences. The Lancet, 391(10132), 1842-1852. doi:10.1016/s0140-6736(18)30312-xRoseboom, T. J. (2018). Developmental plasticity and its relevance to assisted human reproduction. Human Reproduction, 33(4), 546-552. doi:10.1093/humrep/dey034Vrooman, L. A., & Bartolomei, M. S. (2017). Can assisted reproductive technologies cause adult-onset disease? Evidence from human and mouse. Reproductive Toxicology, 68, 72-84. doi:10.1016/j.reprotox.2016.07.015Ng, K. Y. B., Mingels, R., Morgan, H., Macklon, N., & Cheong, Y. (2017). In vivo oxygen, temperature and pH dynamics in the female reproductive tract and their importance in human conception: a systematic review. Human Reproduction Update, 24(1), 15-34. doi:10.1093/humupd/dmx028Zacchini, F., Sampino, S., Stankiewicz, A. M., Haaf, T., & Ptak, G. E. (2019). Assessing the epigenetic risks of assisted reproductive technologies: a way forward. The International Journal of Developmental Biology, 63(3-4-5), 217-222. doi:10.1387/ijdb.180402gpDuranthon, V., & Chavatte-Palmer, P. (2018). Long term effects of ART: What do animals tell us? Molecular Reproduction and Development, 85(4), 348-368. doi:10.1002/mrd.22970Ramos‐Ibeas, P., Heras, S., Gómez‐Redondo, I., Planells, B., Fernández‐González, R., Pericuesta, E., … Gutiérrez‐Adán, A. (2019). Embryo responses to stress induced by assisted reproductive technologies. Molecular Reproduction and Development, 86(10), 1292-1306. doi:10.1002/mrd.23119Feuer, S., & Rinaudo, P. (2016). From Embryos to Adults: A DOHaD Perspective on In Vitro Fertilization and Other Assisted Reproductive Technologies. Healthcare, 4(3), 51. doi:10.3390/healthcare4030051Feuer, S. K., & Rinaudo, P. F. (2017). Physiological, metabolic and transcriptional postnatal phenotypes ofin vitrofertilization (IVF) in the mouse. Journal of Developmental Origins of Health and Disease, 8(4), 403-410. doi:10.1017/s204017441700023xRomar, R., Funahashi, H., & Coy, P. (2016). In vitro fertilization in pigs: New molecules and protocols to consider in the forthcoming years. Theriogenology, 85(1), 125-134. doi:10.1016/j.theriogenology.2015.07.017Canovas, S., Ivanova, E., Romar, R., García-Martínez, S., Soriano-Úbeda, C., García-Vázquez, F. A., … Coy, P. (2017). DNA methylation and gene expression changes derived from assisted reproductive technologies can be decreased by reproductive fluids. eLife, 6. doi:10.7554/elife.23670Campo, H., García-Domínguez, X., López-Martínez, S., Faus, A., Vicente Antón, J. S., Marco-Jiménez, F., & Cervelló, I. (2019). Tissue-specific decellularized endometrial substratum mimicking different physiological conditions influences in vitro embryo development in a rabbit model. Acta Biomaterialia, 89, 126-138. doi:10.1016/j.actbio.2019.03.004Le Saint, C., Crespo, K., Bourdiec, A., Bissonnette, F., Buzaglo, K., Couturier, B., … Kadoch, I. J. (2019). Autologous endometrial cell co-culture improves human embryo development to high-quality blastocysts: a randomized controlled trial. Reproductive BioMedicine Online, 38(3), 321-329. doi:10.1016/j.rbmo.2018.12.039Sparks, A. (2015). Human Embryo Cryopreservation—Methods, Timing, and other Considerations for Optimizing an Embryo Cryopreservation Program. Seminars in Reproductive Medicine, 33(02), 128-144. doi:10.1055/s-0035-1546826Saenz-de-Juano, M. D., Marco-Jiménez, F., Peñaranda, D. S., Joly, T., & Vicente, J. S. (2012). Effects of Slow Freezing Procedure on Late Blastocyst Gene Expression and Survival Rate in Rabbit1. Biology of Reproduction, 87(4). doi:10.1095/biolreprod.112.100677Saenz-de-Juano, M. D., Vicente, J. S., Hollung, K., & Marco-Jiménez, F. (2015). Effect of Embryo Vitrification on Rabbit Foetal Placenta Proteome during Pregnancy. PLOS ONE, 10(4), e0125157. doi:10.1371/journal.pone.0125157Saenz-de-Juano, M. D., Marco-Jimenez, F., Schmaltz-Panneau, B., Jimenez-Trigos, E., Viudes-de-Castro, M. P., Peñaranda, D. S., … Vicente, J. S. (2014). Vitrification alters rabbit foetal placenta at transcriptomic and proteomic level. REPRODUCTION, 147(6), 789-801. doi:10.1530/rep-14-0019Vicente, J. S., Saenz-de-Juano, M. D., Jiménez-Trigos, E., Viudes-de-Castro, M. P., Peñaranda, D. S., & Marco-Jiménez, F. (2013). Rabbit morula vitrification reduces early foetal growth and increases losses throughout gestation. Cryobiology, 67(3), 321-326. doi:10.1016/j.cryobiol.2013.09.165Marco-Jiménez, F., Lavara, R., Jiménez-Trigos, E., & Vicente, J. S. (2013). In vivo development of vitrified rabbit embryos: Effects of vitrification device, recipient genotype, and asynchrony. Theriogenology, 79(7), 1124-1129. doi:10.1016/j.theriogenology.2013.02.008Lavara, R., Baselga, M., Marco-Jiménez, F., & Vicente, J. S. (2014). Long-term and transgenerational effects of cryopreservation on rabbit embryos. Theriogenology, 81(7), 988-992. doi:10.1016/j.theriogenology.2014.01.030Lavara, R., Baselga, M., Marco-Jiménez, F., & Vicente, J. S. (2015). Embryo vitrification in rabbits: Consequences for progeny growth. Theriogenology, 84(5), 674-680. doi:10.1016/j.theriogenology.2015.04.025Garcia-Dominguez, X., Vicente, J. S., & Marco-Jiménez, F. (2020). Developmental Plasticity in Response to Embryo Cryopreservation: The Importance of the Vitrification Device in Rabbits. Animals, 10(5), 804. doi:10.3390/ani10050804Gupta, A., Singh, J., Dufort, I., Robert, C., Dias, F. C. F., & Anzar, M. (2017). Transcriptomic difference in bovine blastocysts following vitrification and slow freezing at morula stage. PLOS ONE, 12(11), e0187268. doi:10.1371/journal.pone.0187268García-Domínguez, X., Marco-Jiménez, F., Puigcerver-Barber, M., Más-Pellicer, A., & Vicente, J. S. (2020). The harmful effect of removing the extracellular vitrification medium during embryo cryopreservation using a nylon mesh device in rabbit. Cryobiology, 93, 44-48. doi:10.1016/j.cryobiol.2020.02.013Marco-Jiménez, F., Jiménez-Trigos, E., Almela-Miralles, V., & Vicente, J. S. (2016). Development of Cheaper Embryo Vitrification Device Using the Minimum Volume Method. PLOS ONE, 11(2), e0148661. doi:10.1371/journal.pone.0148661Saenz-de-Juano, M. D., Marco-Jiménez, F., & Vicente, J. S. (2016). Embryo transfer manipulation cause gene expression variation in blastocysts that disrupt implantation and offspring rates at birth in rabbit. European Journal of Obstetrics & Gynecology and Reproductive Biology, 207, 50-55. doi:10.1016/j.ejogrb.2016.10.049Montag, M., Koll, B., Holmes, P., & Ven, H. van der. (2000). Significance of the Number of Embryonic Cells and the State of the Zona Pellucida for Hatching of Mouse Blastocysts In Vitro Versus In Vivo. Biology of Reproduction, 62(6), 1738-1744. doi:10.1095/biolreprod62.6.1738Giritharan, G., Talbi, S., Donjacour, A., Di Sebastiano, F., Dobson, A. T., & Rinaudo, P. F. (2007). Effect of in vitro fertilization on gene expression and development of mouse preimplantation embryos. Reproduction, 134(1), 63-72. doi:10.1530/rep-06-0247Van Landuyt, L., Van de Velde, H., De Vos, A., Haentjens, P., Blockeel, C., Tournaye, H., & Verheyen, G. (2013). Influence of cell loss after vitrification or slow-freezing on further in vitro development and implantation of human Day 3 embryos. Human Reproduction, 28(11), 2943-2949. doi:10.1093/humrep/det356Salilew-Wondim, D., Saeed-Zidane, M., Hoelker, M., Gebremedhn, S., Poirier, M., Pandey, H. O., … Tesfaye, D. (2018). Genome-wide DNA methylation patterns of bovine blastocysts derived from in vivo embryos subjected to in vitro culture before, during or after embryonic genome activation. BMC Genomics, 19(1). doi:10.1186/s12864-018-4826-3Heras, S., De Coninck, D. I. M., Van Poucke, M., Goossens, K., Bogado Pascottini, O., Van Nieuwerburgh, F., … Van Soom, A. (2016). Suboptimal culture conditions induce more deviations in gene expression in male than female bovine blastocysts. BMC Genomics, 17(1). doi:10.1186/s12864-016-2393-zDriver, A. M., Peñagaricano, F., Huang, W., Ahmad, K. R., Hackbart, K. S., Wiltbank, M. C., & Khatib, H. (2012). RNA-Seq analysis uncovers transcriptomic variations between morphologically similar in vivo- and in vitro-derived bovine blastocysts. BMC Genomics, 13(1). doi:10.1186/1471-2164-13-118Gad, A., Hoelker, M., Besenfelder, U., Havlicek, V., Cinar, U., Rings, F., … Tesfaye, D. (2012). Molecular Mechanisms and Pathways Involved in Bovine Embryonic Genome Activation and Their Regulation by Alternative In Vivo and In Vitro Culture Conditions1. Biology of Reproduction, 87(4). doi:10.1095/biolreprod.112.099697Miles, J. R., Blomberg, L. A., Krisher, R. L., Everts, R. E., Sonstegard, T. S., Van Tassell, C. P., & Zuelke, K. A. (2008). Comparative transcriptome analysis of in vivo- and in vitro-produced porcine blastocysts by small amplified RNA-Serial analysis of gene expression (SAR-SAGE). Molecular Reproduction and Development, 75(6), 976-988. doi:10.1002/mrd.20844Bauer, B. K., Isom, S. C., Spate, L. D., Whitworth, K. M., Spollen, W. G., Blake, S. M., … Prather, R. S. (2010). Transcriptional Profiling by Deep Sequencing Identifies Differences in mRNA Transcript Abundance in In Vivo-Derived Versus In Vitro-Cultured Porcine Blastocyst Stage Embryos1. Biology of Reproduction, 83(5), 791-798. doi:10.1095/biolreprod.110.085936Swain, J., Bormann, C., Clark, S., Walters, E., Wheeler, M., & Krisher, R. (2002). Use of energy substrates by various stage preimplantation pig embryos produced in vivo and in vitro. Reproduction, 253-260. doi:10.1530/rep.0.1230253Lee, Y. S. L., Thouas, G. A., & Gardner, D. K. (2015). Developmental kinetics of cleavage stage mouse embryos are related to their subsequent carbohydrate and amino acid utilization at the blastocyst stage. Human Reproduction, 30(3), 543-552. doi:10.1093/humrep/deu334Krisher, R. L., Heuberger, A. L., Paczkowski, M., Stevens, J., Pospisil, C., Prather, R. S., … Schoolcraft, W. B. (2015). Applying metabolomic analyses to the practice of embryology: physiology, development and assisted reproductive technology. Reproduction, Fertility and Development, 27(4), 602. doi:10.1071/rd14359Perkel, K. J., & Madan, P. (2017). Spent culture medium analysis from individually cultured bovine embryos demonstrates metabolomic differences. Zygote, 25(6), 662-674. doi:10.1017/s0967199417000417McKeegan, P. J., & Sturmey, R. G. (2012). The role of fatty acids in oocyte and early embryo development. Reproduction, Fertility and Development, 24(1), 59. doi:10.1071/rd11907Sayre, B. L., & Lewis, G. S. (1993). Arachidonic acid metabolism during early development of ovine embryos: A possible relationship to shedding of the zona pellucida. Prostaglandins, 45(6), 557-569. doi:10.1016/0090-6980(93)90019-4Feuer, S. K., Liu, X., Donjacour, A., Simbulan, R., Maltepe, E., & Rinaudo, P. (2017). Transcriptional signatures throughout development: the effects of mouse embryo manipulation in vitro. Reproduction, 153(1), 107-122. doi:10.1530/rep-16-0473Feuer, S. K., Donjacour, A., Simbulan, R. K., Lin, W., Liu, X., Maltepe, E., & Rinaudo, P. F. (2014). Sexually Dimorphic Effect of In Vitro Fertilization (IVF) on Adult Mouse Fat and Liver Metabolomes. Endocrinology, 155(11), 4554-4567. doi:10.1210/en.2014-1465Wang, L.-Y., Le, F., Wang, N., Li, L., Liu, X.-Z., Zheng, Y.-M., … Jin, F. (2013). Alteration of fatty acid metabolism in the liver, adipose tissue, and testis of male mice conceived through assisted reproductive technologies: fatty acid metabolism in ART mice. Lipids in Health and Disease, 12(1). doi:10.1186/1476-511x-12-5Leese, H. J., Guerif, F., Allgar, V., Brison, D. R., Lundin, K., & Sturmey, R. G. (2016). Biological optimization, the Goldilocks principle, and how much islagomin the preimplantation embryo. Molecular Reproduction and Development, 83(9), 748-754. doi:10.1002/mrd.22684Gándara, L., & Wappner, P. (2018). Metabo-Devo: A metabolic perspective of development. Mechanisms of Development, 154, 12-23. doi:10.1016/j.mod.2018.02.004Viudes‐de‐Castro, M. P., Marco‐Jiménez, F., Más Pellicer, A., García‐Domínguez, X., Talaván, A. M., & Vicente, J. S. (2019). A single injection of corifollitropin alfa supplemented with human chorionic gonadotropin increases follicular recruitment and transferable embryos in the rabbit. Reproduction in Domestic Animals, 54(4), 696-701. doi:10.1111/rda.13411Vicente, J. S., & García-Ximénez, F. (1994). Osmotic and cryoprotective effects of a mixture of DMSO and ethylene glycol on rabbit morulae. Theriogenology, 42(7), 1205-1215. doi:10.1016/0093-691x(94)90869-9Vicente, J.-S., Viudes-de-Castro, M.-P., & García, M.-L. (1999). In vivo survival rate of rabbit morulae after vitrification in a medium without serum protein. Reproduction Nutrition Development, 39(5-6), 657-662. doi:10.1051/rnd:19990511Garcia-Dominguez, X., Marco-Jimenez, F., Viudes-de-Castro, M. P., & Vicente, J. S. (2019). Minimally Invasive Embryo Transfer and Embryo Vitrification at the Optimal Embryo Stage in Rabbit Model. Journal of Visualized Experiments, (147). doi:10.3791/58055Besenfelder, U., & Brem, G. (1993). Laparoscopic embryo transfer in rabbits. Reproduction, 99(1), 53-56. doi:10.1530/jrf.0.0990053Diretto, G., Rubio-Moraga, A., Argandoña, J., Castillo, P., Gómez-Gómez, L., & Ahrazem, O. (2017). Tissue-Specific Accumulation of Sulfur Compounds and Saponins in Different Parts of Garlic Cloves from Purple and White Ecotypes. Molecules, 22(8), 1359. doi:10.3390/molecules22081359Cappelli, G., Giovannini, D., Basso, A. L., Demurtas, O. C., Diretto, G., Santi, C., … Mariani, F. (2018). A Corylus avellana L. extract enhances human macrophage bactericidal response against Staphylococcus aureus by increasing the expression of anti-inflammatory and iron metabolism genes. Journal of Functional Foods, 45, 499-511. doi:10.1016/j.jff.2018.04.007Di Meo, F., Aversano, R., Diretto, G., Demurtas, O. C., Villano, C., Cozzolino, S., … Crispi, S. (2019). Anti-cancer activity of grape seed semi-polar extracts in human mesothelioma cell lines. Journal of Functional Foods, 61, 103515. doi:10.1016/j.jff.2019.103515Fiore, A., Dall’Osto, L., Cazzaniga, S., Diretto, G., Giuliano, G., & Bassi, R. (2012). A quadruple mutant of Arabidopsis reveals a β-carotene hydroxylation activity for LUT1/CYP97C1 and a regulatory role of xanthophylls on determination of the PSI/PSII ratio. BMC Plant Biology, 12(1). doi:10.1186/1471-2229-12-50Rambla, J. L., Trapero-Mozos, A., Diretto, G., Rubio-Moraga, A., Granell, A., Gómez-Gómez, L., & Ahrazem, O. (2016). Gene-Metabolite Networks of Volatile Metabolism in Airen and Tempranillo Grape Cultivars Revealed a Distinct Mechanism of Aroma Bouquet Production. Frontiers in Plant Science, 7. doi:10.3389/fpls.2016.01619Sulli, M., Mandolino, G., Sturaro, M., Onofri, C., Diretto, G., Parisi, B., & Giuliano, G. (2017). Molecular and biochemical characterization of a potato collection with contrasting tuber carotenoid content. PLOS ONE, 12(9), e0184143. doi:10.1371/journal.pone.0184143Benjamini, Y., & Hochberg, Y. (1995). Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. Journal of the Royal Statistical Society: Series B (Methodological), 57(1), 289-300. doi:10.1111/j.2517-6161.1995.tb02031.xGarcia-Dominguez, X., Marco-Jiménez, F., Peñaranda, D. S., Diretto, G., García-Carpintero, V., Cañizares, J., & Vicente, J. S. (2020). Long-term and transgenerational phenotypic, transcriptional and metabolic effects in rabbit males born following vitrified embryo transfer. Scientific Reports, 10(1). doi:10.1038/s41598-020-68195-

    Flavescence dorée-derived leaf yellowing in grapevine (Vitis vinifera l.) is associated to a general repression of isoprenoid biosynthetic pathways

    Get PDF
    The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fpls.2020.00896/full#supplementary-materialFlavescence dorée (FD), caused by the phytoplasma Candidatus Phytoplasma vitis, is a major threat to vineyard survival in different European grape-growing areas. It has been recorded in French vineyards since the mid-1950s, and rapidly spread to other countries. In Portugal, the phytoplasma was first detected in the DOC region of Vinhos Verdes in 2006, and reached the central region of the country in 2009. The infection causes strong accumulation of carbohydrates and phenolics in the mesophyll cells and a simultaneous decrease of chlorophylls, events accompanied by a down regulation of genes and proteins involved in the dark and light-dependent reactions and stabilization of the photosystem II (PSII). In the present study, to better elucidate the basis of the leaf chlorosis in infected grapevine cv. Loureiro, we studied the isoprenoid transcriptmetabolite correlation in leaves from healthy and FD-infected vines. Specifically, targeted metabolome revealed that twenty-one compounds (out of thirty-two), including chlorophylls, carotenoids, quinones and tocopherols, were reduced in response to FD-infection. Thereafter, and consistently with the biochemical data, qPCR analysis highlighted a severe FD-mediated repression in key genes involved in isoprenoid biosynthetic pathways. A more diverse set of changes, on the contrary, was observed in the case of ABA metabolism. Principal component analysis (PCA) of all identified metabolites clearly separated healthy from FD-infected vines, therefore confirming that the infection strongly alters the biosynthesis of grapevine isoprenoids; additionally, forty-four genes and metabolites were identified as the components mostly explaining the variance between healthy and infected samples. Finally, transcriptmetabolite network correlation analyses were exploited to display the main hubs of the infection process, which highlighted a strong role of VvCHLG, VvVTE and VvZEP genes and the chlorophylls intermediates aminolevulunic acid and porphobilinogen in response to FD infection. Overall, results indicated that the FD infection impairs the synthesis of isoprenoids, through the repression of key genes involved in the biosynthesis of chlorophylls, carotenoids, quinones and tocopherols.The work was supported by National Funds by FCT - Portuguese Foundation for Science and Technology, under the strategic program UIDB/04050/2020. The work was also supported by FCT and European Funds (FEDER/POCI/ COMPETE2020) through the research projects BerryPlastid (PTDC/BIAFBT/28165/2017 and POCI-01-0145-FEDER - 028165), MitiVineDrought (PTDC/BIA-FBT/30341/2017 and POCI-01- 0145-FEDER-030341) and GrapeInfectomics (PTDC/ASPHOR/28485/2017). AT was supported by a postdoctoral researcher contract/position within the project “BerryPlastid”. HN was supported by an FCT postdoctoral grant (SFRH/BPD/115518/2016). The work also benefited from the networking activities within the European Cooperation in Science and Technology Action (EUROCAROTEN CA15136).info:eu-repo/semantics/publishedVersio

    Efficient production of saffron crocins and picrocrocin in Nicotiana benthamiana using a virus-driven system

    Full text link
    [EN] Crocins and picrocrocin are glycosylated apocarotenoids responsible, respectively, for the color and the unique taste of the saffron spice, known as red gold due to its high price. Several studies have also shown the health-promoting properties of these compounds. However, their high costs hamper the wide use of these metabolites in the pharmaceutical sector. We have developed a virus-driven system to produce remarkable amounts of crocins and picrocrocin in adult Nicotiana benthamiana plants in only two weeks. The system consists of viral clones derived from tobacco etch potyvirus that express specific carotenoid cleavage dioxygenase (CCD) enzymes from Crocus sativus and Buddleja davidii. Metabolic analyses of infected tissues demonstrated that the sole virus driven expression of C. sativus CsCCD2L or B. davidii BdCCD4.1 resulted in the production of crocins, picrocrocin and safranal. Using the recombinant virus that expressed CsCCD2L, accumulations of 0.2% of crocins and 0.8% of picrocrocin in leaf dry weight were reached in only two weeks. In an attempt to improve apocarotenoid content in N. benthamiana, co-expression of CsCCD2L with other carotenogenic enzymes, such as Pantoea ananatis phytoene synthase (PaCrtB) and saffron beta-carotene hydroxylase 2 (BCH2), was performed using the same viral system. This combinatorial approach led to an additional crocin increase up to 0.35% in leaves in which CsCCD2L and PaCrtB were co-expressed. Considering that saffron apocarotenoids are costly harvested from flower stigma once a year, and that Buddleja spp. flowers accumulate lower amounts, this system may be an attractive alternative for the sustainable production of these appreciated metabolites.We thank K. Schreiber and C. Mares (IBMCP, CSIC-UPV, Valencia, Spain) for technical assistance during plant transformation. We thank M. Gasc.on and M.D. G.omez-Jim.enez (IBMCP, CSIC-UPV, Valencia, Spain) for helpful assistance with LSCM analyses. We thank D. Dubbala (IBMCP, CSIC-UPV, Valencia, Spain) for English revision. This work was supported by grants BIO2016-77000-R and BIO2017-83184-R from the Spanish Ministerio de Ciencia e Innovacion (co-financed European Union ERDF), and SBPLY/17/180501/000234 from Junta de Comunidades de Castilla-La Mancha. M.M. was the recipient of a predoctoral fellowship from the Spanish Ministerio de Educacion, Cultura y Deporte (FPU16/05294). G.D. and L.G.G. are participants of the European COST action CA15136 (EUROCAROTEN). L.G.G. is a participant of the CARNET network (BIO2015-71703-REDT and BIO2017-90877-RED).Martí, M.; Diretto, G.; Aragones, V.; Frusciante, S.; Ahrazem, O.; Gómez-Gómez, L.; Daròs, J. (2020). Efficient production of saffron crocins and picrocrocin in Nicotiana benthamiana using a virus-driven system. Metabolic Engineering. 61:238-250. https://doi.org/10.1016/j.ymben.2020.06.009S23825061Ahrazem, O., Argandoña, J., Fiore, A., Aguado, C., Luján, R., Rubio-Moraga, Á., … Gómez-Gómez, L. (2018). Transcriptome analysis in tissue sectors with contrasting crocins accumulation provides novel insights into apocarotenoid biosynthesis and regulation during chromoplast biogenesis. Scientific Reports, 8(1). doi:10.1038/s41598-018-21225-zAhrazem, O., Diretto, G., Argandoña, J., Rubio-Moraga, Á., Julve, J. M., Orzáez, D., … Gómez-Gómez, L. (2017). Evolutionarily distinct carotenoid cleavage dioxygenases are responsible for crocetin production in Buddleja davidii. Journal of Experimental Botany, 68(16), 4663-4677. doi:10.1093/jxb/erx277Ahrazem, O., Gómez-Gómez, L., Rodrigo, M., Avalos, J., & Limón, M. (2016). Carotenoid Cleavage Oxygenases from Microbes and Photosynthetic Organisms: Features and Functions. International Journal of Molecular Sciences, 17(11), 1781. doi:10.3390/ijms17111781Ahrazem, O., Rubio-Moraga, A., Argandoña-Picazo, J., Castillo, R., & Gómez-Gómez, L. (2016). Intron retention and rhythmic diel pattern regulation of carotenoid cleavage dioxygenase 2 during crocetin biosynthesis in saffron. Plant Molecular Biology, 91(3), 355-374. doi:10.1007/s11103-016-0473-8Ahrazem, O., Rubio‐Moraga, A., Berman, J., Capell, T., Christou, P., Zhu, C., & Gómez‐Gómez, L. (2015). The carotenoid cleavage dioxygenase CCD 2 catalysing the synthesis of crocetin in spring crocuses and saffron is a plastidial enzyme. New Phytologist, 209(2), 650-663. doi:10.1111/nph.13609Ahrazem, O., Rubio-Moraga, A., Nebauer, S. G., Molina, R. V., & Gómez-Gómez, L. (2015). Saffron: Its Phytochemistry, Developmental Processes, and Biotechnological Prospects. Journal of Agricultural and Food Chemistry, 63(40), 8751-8764. doi:10.1021/acs.jafc.5b03194ALONSO, G. L., SALINAS, M. R., GARIJO, J., & SÁNCHEZ-FERNÁNDEZ, M. A. (2001). COMPOSITION OF CROCINS AND PICROCROCIN FROM SPANISH SAFFRON (CROCUS SATIVUS L.). Journal of Food Quality, 24(3), 219-233. doi:10.1111/j.1745-4557.2001.tb00604.xAmin, B., & Hosseinzadeh, H. (2012). Evaluation of aqueous and ethanolic extracts of saffron, Crocus sativus L., and its constituents, safranal and crocin in allodynia and hyperalgesia induced by chronic constriction injury model of neuropathic pain in rats. Fitoterapia, 83(5), 888-895. doi:10.1016/j.fitote.2012.03.022Apel, W., & Bock, R. (2009). Enhancement of Carotenoid Biosynthesis in Transplastomic Tomatoes by Induced Lycopene-to-Provitamin A Conversion. Plant Physiology, 151(1), 59-66. doi:10.1104/pp.109.140533Arango, J., Jourdan, M., Geoffriau, E., Beyer, P., & Welsch, R. (2014). Carotene Hydroxylase Activity Determines the Levels of Both α-Carotene and Total Carotenoids in Orange Carrots. The Plant Cell, 26(5), 2223-2233. doi:10.1105/tpc.113.122127Bedoya, L., Martínez, F., Rubio, L., & Daròs, J.-A. (2010). Simultaneous equimolar expression of multiple proteins in plants from a disarmed potyvirus vector. Journal of Biotechnology, 150(2), 268-275. doi:10.1016/j.jbiotec.2010.08.006Bedoya, L. C., Martínez, F., Orzáez, D., & Daròs, J.-A. (2012). Visual Tracking of Plant Virus Infection and Movement Using a Reporter MYB Transcription Factor That Activates Anthocyanin Biosynthesis  . Plant Physiology, 158(3), 1130-1138. doi:10.1104/pp.111.192922Bukhari, S. I., Manzoor, M., & Dhar, M. K. (2018). A comprehensive review of the pharmacological potential of Crocus sativus and its bioactive apocarotenoids. Biomedicine & Pharmacotherapy, 98, 733-745. doi:10.1016/j.biopha.2017.12.090Cappelli, G., Giovannini, D., Basso, A. L., Demurtas, O. C., Diretto, G., Santi, C., … Mariani, F. (2018). A Corylus avellana L. extract enhances human macrophage bactericidal response against Staphylococcus aureus by increasing the expression of anti-inflammatory and iron metabolism genes. Journal of Functional Foods, 45, 499-511. doi:10.1016/j.jff.2018.04.007Castillo, R., Fernández, J.-A., & Gómez-Gómez, L. (2005). Implications of Carotenoid Biosynthetic Genes in Apocarotenoid Formation during the Stigma Development of Crocus sativus and Its Closer Relatives. Plant Physiology, 139(2), 674-689. doi:10.1104/pp.105.067827Chai, F., Wang, Y., Mei, X., Yao, M., Chen, Y., Liu, H., … Yuan, Y. (2017). Heterologous biosynthesis and manipulation of crocetin in Saccharomyces cerevisiae. Microbial Cell Factories, 16(1). doi:10.1186/s12934-017-0665-1Cheriyamundath, S., Choudhary, S., & Lopus, M. (2017). Safranal Inhibits HeLa Cell Viability by Perturbing the Reassembly Potential of Microtubules. Phytotherapy Research, 32(1), 170-173. doi:10.1002/ptr.5938Christodoulou, E., Kadoglou, N. P., Kostomitsopoulos, N., & Valsami, G. (2015). Saffron: a natural product with potential pharmaceutical applications. Journal of Pharmacy and Pharmacology, 67(12), 1634-1649. doi:10.1111/jphp.12456Côté, F., Cormier, F., Dufresne, C., & Willemot, C. (2001). A highly specific glucosyltransferase is involved in the synthesis of crocetin glucosylesters in Crocus sativus cultured cells. Journal of Plant Physiology, 158(5), 553-560. doi:10.1078/0176-1617-00305D’Archivio, A. A., Giannitto, A., Maggi, M. A., & Ruggieri, F. (2016). Geographical classification of Italian saffron (Crocus sativus L.) based on chemical constituents determined by high-performance liquid-chromatography and by using linear discriminant analysis. Food Chemistry, 212, 110-116. doi:10.1016/j.foodchem.2016.05.149D’Esposito, D., Ferriello, F., Molin, A. D., Diretto, G., Sacco, A., Minio, A., … Ercolano, M. R. (2017). Unraveling the complexity of transcriptomic, metabolomic and quality environmental response of tomato fruit. BMC Plant Biology, 17(1). doi:10.1186/s12870-017-1008-4Demurtas, O. C., Frusciante, S., Ferrante, P., Diretto, G., Azad, N. H., Pietrella, M., … Giuliano, G. (2018). Candidate Enzymes for Saffron Crocin Biosynthesis Are Localized in Multiple Cellular Compartments. Plant Physiology, 177(3), 990-1006. doi:10.1104/pp.17.01815Diretto, G., Ahrazem, O., Rubio‐Moraga, Á., Fiore, A., Sevi, F., Argandoña, J., & Gómez‐Gómez, L. (2019). UGT709G1: a novel uridine diphosphate glycosyltransferase involved in the biosynthesis of picrocrocin, the precursor of safranal in saffron ( Crocus sativus ). New Phytologist, 224(2), 725-740. doi:10.1111/nph.16079Diretto, G., Al-Babili, S., Tavazza, R., Papacchioli, V., Beyer, P., & Giuliano, G. (2007). Metabolic Engineering of Potato Carotenoid Content through Tuber-Specific Overexpression of a Bacterial Mini-Pathway. PLoS ONE, 2(4), e350. doi:10.1371/journal.pone.0000350Du, H., Wang, N., Cui, F., Li, X., Xiao, J., & Xiong, L. (2010). Characterization of the β-Carotene Hydroxylase Gene DSM2 Conferring Drought and Oxidative Stress Resistance by Increasing Xanthophylls and Abscisic Acid Synthesis in Rice      . Plant Physiology, 154(3), 1304-1318. doi:10.1104/pp.110.163741Eroglu, A., & Harrison, E. H. (2013). Carotenoid metabolism in mammals, including man: formation, occurrence, and function of apocarotenoids. Journal of Lipid Research, 54(7), 1719-1730. doi:10.1194/jlr.r039537Farré, G., Blancquaert, D., Capell, T., Van Der Straeten, D., Christou, P., & Zhu, C. (2014). Engineering Complex Metabolic Pathways in Plants. Annual Review of Plant Biology, 65(1), 187-223. doi:10.1146/annurev-arplant-050213-035825Fasano, C., Diretto, G., Aversano, R., D’Agostino, N., Di Matteo, A., Frusciante, L., … Carputo, D. (2016). Transcriptome and metabolome of synthetic Solanum autotetraploids reveal key genomic stress events following polyploidization. New Phytologist, 210(4), 1382-1394. doi:10.1111/nph.13878Fiedor, J., & Burda, K. (2014). Potential Role of Carotenoids as Antioxidants in Human Health and Disease. Nutrients, 6(2), 466-488. doi:10.3390/nu6020466Finley, J. W., & Gao, S. (2017). A Perspective on Crocus sativus L. (Saffron) Constituent Crocin: A Potent Water-Soluble Antioxidant and Potential Therapy for Alzheimer’s Disease. Journal of Agricultural and Food Chemistry, 65(5), 1005-1020. doi:10.1021/acs.jafc.6b04398Fraser, P. (2004). The biosynthesis and nutritional uses of carotenoids. Progress in Lipid Research, 43(3), 228-265. doi:10.1016/j.plipres.2003.10.002Frusciante, S., Diretto, G., Bruno, M., Ferrante, P., Pietrella, M., Prado-Cabrero, A., … Giuliano, G. (2014). Novel carotenoid cleavage dioxygenase catalyzes the first dedicated step in saffron crocin biosynthesis. Proceedings of the National Academy of Sciences, 111(33), 12246-12251. doi:10.1073/pnas.1404629111Georgiadou, G., Tarantilis, P. A., & Pitsikas, N. (2012). Effects of the active constituents of Crocus Sativus L., crocins, in an animal model of obsessive–compulsive disorder. Neuroscience Letters, 528(1), 27-30. doi:10.1016/j.neulet.2012.08.081Gibson, D. G., Young, L., Chuang, R.-Y., Venter, J. C., Hutchison, C. A., & Smith, H. O. (2009). Enzymatic assembly of DNA molecules up to several hundred kilobases. Nature Methods, 6(5), 343-345. doi:10.1038/nmeth.1318Giorio, G., Stigliani, A. L., & D’Ambrosio, C. (2006). Agronomic performance and transcriptional analysis of carotenoid biosynthesis in fruits of transgenic HighCaro and control tomato lines under field conditions. Transgenic Research, 16(1), 15-28. doi:10.1007/s11248-006-9025-3Gómez-Gómez, L., Pacios, L., Diaz-Perales, A., Garrido-Arandia, M., Argandoña, J., Rubio-Moraga, Á., & Ahrazem, O. (2018). Expression and Interaction Analysis among Saffron ALDHs and Crocetin Dialdehyde. International Journal of Molecular Sciences, 19(5), 1409. doi:10.3390/ijms19051409Gómez-Gómez, L., Parra-Vega, V., Rivas-Sendra, A., Seguí-Simarro, J., Molina, R., Pallotti, C., … Ahrazem, O. (2017). Unraveling Massive Crocins Transport and Accumulation through Proteome and Microscopy Tools during the Development of Saffron Stigma. International Journal of Molecular Sciences, 18(1), 76. doi:10.3390/ijms18010076Gonda, S., Parizsa, P., Surányi, G., Gyémánt, G., & Vasas, G. (2012). Quantification of main bioactive metabolites from saffron (Crocus sativus) stigmas by a micellar electrokinetic chromatographic (MEKC) method. Journal of Pharmaceutical and Biomedical Analysis, 66, 68-74. doi:10.1016/j.jpba.2012.03.002Grosso, V., Farina, A., Giorgi, D., Nardi, L., Diretto, G., & Lucretti, S. (2017). A high-throughput flow cytometry system for early screening of in vitro made polyploids in Dendrobium hybrids. Plant Cell, Tissue and Organ Culture (PCTOC), 132(1), 57-70. doi:10.1007/s11240-017-1310-8Hasunuma, T., Miyazawa, S.-I., Yoshimura, S., Shinzaki, Y., Tomizawa, K.-I., Shindo, K., … Miyake, C. (2008). Biosynthesis of astaxanthin in tobacco leaves by transplastomic engineering. The Plant Journal, 55(5), 857-868. doi:10.1111/j.1365-313x.2008.03559.xHellens, R. P., Edwards, E. A., Leyland, N. R., Bean, S., & Mullineaux, P. M. (2000). Plant Molecular Biology, 42(6), 819-832. doi:10.1023/a:1006496308160Jabini, R., Ehtesham-Gharaee, M., Dalirsani, Z., Mosaffa, F., Delavarian, Z., & Behravan, J. (2017). Evaluation of the Cytotoxic Activity of Crocin and Safranal, Constituents of Saffron, in Oral Squamous Cell Carcinoma (KB Cell Line). Nutrition and Cancer, 69(6), 911-919. doi:10.1080/01635581.2017.1339816Jia, K.-P., Baz, L., & Al-Babili, S. (2017). From carotenoids to strigolactones. Journal of Experimental Botany, 69(9), 2189-2204. doi:10.1093/jxb/erx476Koulakiotis, N., Gikas, E., Iatrou, G., Lamari, F., & Tsarbopoulos, A. (2015). Quantitation of Crocins and Picrocrocin in Saffron by HPLC: Application to Quality Control and Phytochemical Differentiation from Other Crocus Taxa. Planta Medica, 81(07), 606-612. doi:10.1055/s-0035-1545873Kyriakoudi, A., O’Callaghan, Y. C., Galvin, K., Tsimidou, M. Z., & O’Brien, N. M. (2015). Cellular Transport and Bioactivity of a Major Saffron Apocarotenoid, Picrocrocin (4-(β-d-Glucopyranosyloxy)-2,6,6-trimethyl-1-cyclohexene-1-carboxaldehyde). Journal of Agricultural and Food Chemistry, 63(39), 8662-8668. doi:10.1021/acs.jafc.5b03363Lagarde, D., Beuf, L., & Vermaas, W. (2000). Increased Production of Zeaxanthin and Other Pigments by Application of Genetic Engineering Techniques to Synechocystis sp. Strain PCC 6803. Applied and Environmental Microbiology, 66(1), 64-72. doi:10.1128/aem.66.1.64-72.2000Lage, M., & Cantrell, C. L. (2009). Quantification of saffron (Crocus sativus L.) metabolites crocins, picrocrocin and safranal for quality determination of the spice grown under different environmental Moroccan conditions. Scientia Horticulturae, 121(3), 366-373. doi:10.1016/j.scienta.2009.02.017Li, Y., Cui, H., Cui, X., & Wang, A. (2016). The altered photosynthetic machinery during compatible virus infection. Current Opinion in Virology, 17, 19-24. doi:10.1016/j.coviro.2015.11.002Lopez, A. B., Van Eck, J., Conlin, B. J., Paolillo, D. J., O’Neill, J., & Li, L. (2008). Effect of the cauliflower Or transgene on carotenoid accumulation and chromoplast formation in transgenic potato tubers. Journal of Experimental Botany, 59(2), 213-223. doi:10.1093/jxb/erm299Lopresti, A. L., & Drummond, P. D. (2014). Saffron (Crocus sativus) for depression: a systematic review of clinical studies and examination of underlying antidepressant mechanisms of action. Human Psychopharmacology: Clinical and Experimental, 29(6), 517-527. doi:10.1002/hup.2434Maass, D., Arango, J., Wüst, F., Beyer, P., & Welsch, R. (2009). Carotenoid Crystal Formation in Arabidopsis and Carrot Roots Caused by Increased Phytoene Synthase Protein Levels. PLoS ONE, 4(7), e6373. doi:10.1371/journal.pone.0006373Majer, E., Llorente, B., Rodríguez-Concepción, M., & Daròs, J.-A. (2017). Rewiring carotenoid biosynthesis in plants using a viral vector. Scientific Reports, 7(1). doi:10.1038/srep41645Majer, E., Navarro, J., & Daròs, J. (2015). A potyvirus vector efficiently targets recombinant proteins to chloroplasts, mitochondria and nuclei in plant cells when expressed at the amino terminus of the polyprotein. Biotechnology Journal, 10(11), 1792-1802. doi:10.1002/biot.201500042Martin, C., & Li, J. (2017). Medicine is not health care, food is health care: plant metabolic engineering, diet and human health. New Phytologist, 216(3), 699-719. doi:10.1111/nph.14730Masi, E., Taiti, C., Heimler, D., Vignolini, P., Romani, A., & Mancuso, S. (2016). PTR-TOF-MS and HPLC analysis in the characterization of saffron (Crocus sativus L.) from Italy and Iran. Food Chemistry, 192, 75-81. doi:10.1016/j.foodchem.2015.06.090Moraga, A. R., Nohales, P. F., P�rez, J. A. F., & G�mez-G�mez, L. (2004). Glucosylation of the saffron apocarotenoid crocetin by a glucosyltransferase isolated from Crocus sativus stigmas. Planta, 219(6), 955-966. doi:10.1007/s00425-004-1299-1Moraga, Á. R., Rambla, J. L., Ahrazem, O., Granell, A., & Gómez-Gómez, L. (2009). Metabolite and target transcript analyses during Crocus sativus stigma development. Phytochemistry, 70(8), 1009-1016. doi:10.1016/j.phytochem.2009.04.022Moras, B., Loffredo, L., & Rey, S. (2018). Quality assessment of saffron ( Crocus sativus L.) extracts via UHPLC-DAD-MS analysis and detection of adulteration using gardenia fruit extract ( Gardenia jasminoides Ellis). Food Chemistry, 257, 325-332. doi:10.1016/j.foodchem.2018.03.025Nagatoshi, M., Terasaka, K., Owaki, M., Sota, M., Inukai, T., Nagatsu, A., & Mizukami, H. (2012). UGT75L6 and UGT94E5 mediate sequential glucosylation of crocetin to crocin inGardenia jasminoides. FEBS Letters, 586(7), 1055-1061. doi:10.1016/j.febslet.2012.03.003Nam, K. N., Park, Y.-M., Jung, H.-J., Lee, J. Y., Min, B. D., Park, S.-U., … Lee, E. H. (2010). Anti-inflammatory effects of crocin and crocetin in rat brain microglial cells. European Journal of Pharmacology, 648(1-3), 110-116. doi:10.1016/j.ejphar.2010.09.003Nisar, N., Li, L., Lu, S., Khin, N. C., & Pogson, B. J. (2015). Carotenoid Metabolism in Plants. Molecular Plant, 8(1), 68-82. doi:10.1016/j.molp.2014.12.007Nogueira, M., Enfissi, E. M. A., Welsch, R., Beyer, P., Zurbriggen, M. D., & Fraser, P. D. (2019). Construction of a fusion enzyme for astaxanthin formation and its characterisation in microbial and plant hosts: A new tool for engineering ketocarotenoids. Metabolic Engineering, 52, 243-252. doi:10.1016/j.ymben.2018.12.006Ouyang, E., Li, X., & Zhang, C. (2011). Simultaneous determination of geniposide, chlorogenic acid, crocin1, and rutin in crude and processed fructus gardeniae extracts by high performance liquid chromatography. Pharmacognosy Magazine, 7(28), 267. doi:10.4103/0973-1296.90391Pfister, S., Meyer, P., Steck, A., & Pfander, H. (1996). Isolation and Structure Elucidation of Carotenoid−Glycosyl Esters in Gardenia Fruits (Gardenia jasminoides Ellis) and Saffron (Crocus sativus Linne). Journal of Agricultural and Food Chemistry, 44(9), 2612-2615. doi:10.1021/jf950713eRambla, J. L., Trapero-Mozos, A., Diretto, G., Rubio-Moraga, A., Granell, A., Gómez-Gómez, L., & Ahrazem, O. (2016). Gene-Metabolite Networks of Volatile Metabolism in Airen and Tempranillo Grape Cultivars Revealed a Distinct Mechanism of Aroma Bouquet Production. Frontiers in Plant Science, 7. doi:10.3389/fpls.2016.01619Richardson, A. D., Duigan, S. P., & Berlyn, G. P. (2002). An evaluation of noninvasive methods to estimate foliar chlorophyll content. New Phytologist, 153(1), 185-194. doi:10.1046/j.0028-646x.2001.00289.xRodriguez-Concepcion, M., Avalos, J., Bonet, M. L., Boronat, A., Gomez-Gomez, L., Hornero-Mendez, D., … Zhu, C. (2018). A global perspective on carotenoids: Metabolism, biotechnology, and benefits for nutrition and health. Progress in Lipid Research, 70, 62-93. doi:10.1016/j.plipres.2018.04.004Römer, S., Lübeck, J., Kauder, F., Steiger, S., Adomat, C., & Sandmann, G. (2002). Genetic Engineering of a Zeaxanthin-rich Potato by Antisense Inactivation and Co-suppression of Carotenoid Epoxidation. Metabolic Engineering, 4(4), 263-272. doi:10.1006/mben.2002.0234Rubio-Moraga, A., Trapero, A., Ahrazem, O., & Gómez-Gómez, L. (2010). Crocins transport in Crocus sativus: The long road from a senescent stigma to a newborn corm. Phytochemistry, 71(13), 1506-1513. doi:10.1016/j.phytochem.2010.05.026Rubio Moraga, A., Ahrazem, O., Rambla, J. L., Granell, A., & Gómez Gómez, L. (2013). Crocins with High Levels of Sugar Conjugation Contribute to the Yellow Colours of Early-Spring Flowering Crocus Tepals. PLoS ONE, 8(9), e71946. doi:10.1371/journal.pone.0071946Sainsbury, F., Saxena, P., Geisler, K., Osbourn, A., & Lomonossoff, G. P. (2012). Using a Virus-Derived System to Manipulate Plant Natural Product Biosynthetic Pathways. Natural Product Biosynthesis by Microorganisms and Plants, Part C, 185-202. doi:10.1016/b978-0-12-404634-4.00009-7Sulli, M., Mandolino, G., Sturaro, M., Onofri, C., Diretto, G., Parisi, B., & Giuliano, G. (2017). Molecular and biochemical characterization of a potato collection with contrasting tuber carotenoid content. PLOS ONE, 12(9), e0184143. doi:10.1371/journal.pone.0184143Tan, H., Chen, X., Liang, N., Chen, R., Chen, J., Hu, C.

    Early Embryo Exposure to Assisted Reproductive Manipulation Induced Subtle Changes in Liver Epigenetics with No Apparent Negative Health Consequences in Rabbit

    Full text link
    [EN] Embryo manipulation is a requisite step in assisted reproductive technology (ART). Therefore, it is of great necessity to appraise the safety of ART and investigate the long-term effect, including lipid metabolism, on ART-conceived offspring. Augmenting our ART rabbit model to investigate lipid metabolic outcomes in offspring longitudinally, we detected variations in hepatic DNA methylation ART offspring in the F3 generation for embryonic exposure (multiple ovulation, vitrification and embryo transfer). Through adult liver metabolomics and proteomics, we identified changes mainly related to lipid metabolism (e.g., polyunsaturated fatty acids, steroids, steroid hormone). We also found that DNA methylation analysis was linked to changes in lipid metabolism and apoptosis genes. Nevertheless, these differences did not apparently alter the general health status. Thus, our findings suggest that ART is likely to be a player in embryo epigenetic events related to hepatic homeostasis alteration in adulthood.This research was funded by the Spanish Ministry of Economy and Competitiveness (MINECO), Spain, grant number AGL2014-53405-C2-1-P and by Conselleria d'Educacio, Investigacio, Cultura i Esport, Spain, grant number Prometeo II 2014/036. Ximo Garcia-Dominguez was supported by a research grant from the Ministry of Economy, Industry and Competitiveness of Spain (BES-2015-072429).García-Domínguez, X.; Diretto, G.; Peñaranda, D.; Frusciante, S.; García-Carpintero, V.; Cañizares Sales, J.; Vicente Antón, JS.... (2021). Early Embryo Exposure to Assisted Reproductive Manipulation Induced Subtle Changes in Liver Epigenetics with No Apparent Negative Health Consequences in Rabbit. International Journal of Molecular Sciences. 22(18):1-17. https://doi.org/10.3390/ijms22189716S117221

    Manipulation of β-carotene levels in tomato fruits results in increased ABA content and extended shelf-life

    Get PDF
    Tomato fruit ripening is controlled by the hormone ethylene and by a group of transcription factors, acting upstream of ethylene. During ripening, the linear carotene lycopene accumulates at the expense of cyclic carotenoids. Fruit-specific overexpression of LYCOPENE β-CYCLASE (LCYb) resulted in increased β-carotene (provitamin A) content. Unexpectedly, LCYb-overexpressing fruits also exhibited a diverse array of ripening phenotypes, including delayed softening and extended shelf life. These phenotypes were accompanied, at the biochemical level, by an increase of abscisic acid (ABA) content, decreased ethylene production, increased density of cell wall material containing linear pectins with a low degree of methylation, and a thicker cuticle with a higher content of cutin monomers and triterpenoids. The levels of several primary metabolites and phenylpropanoid compounds were also altered in the transgenic fruits, which could be attributed to delayed fruit ripening and/or to ABA. Network correlation analysis and pharmacological experiments with the ABA biosynthesis inhibitor, abamine, indicated that altered ABA levels were a direct effect of the increased β-carotene content and were in turn responsible for the extended shelf life phenotype. Thus, manipulation of -carotene levels results not only in an improvement of the nutritional value of tomato fruits, but also of their shelf life

    Fortification and bioaccessibility of saffron apocarotenoids in potato tubers

    Get PDF
    Carotenoids are C40 isoprenoids with well-established roles in photosynthesis, pollination, photoprotection, and hormone biosynthesis. The enzymatic or ROS-induced cleavage of carotenoids generates a group of compounds named apocarotenoids, with an increasing interest by virtue of their metabolic, physiological, and ecological activities. Both classes are used industrially in a variety of fields as colorants, supplements, and bio-actives. Crocins and picrocrocin, two saffron apocarotenoids, are examples of high-value pigments utilized in the food, feed, and pharmaceutical industries. In this study, a unique construct was achieved, namely O6, which contains CsCCD2L, UGT74AD1, and UGT709G1 genes responsible for the biosynthesis of saffron apocarotenoids driven by a patatin promoter for the generation of potato tubers producing crocins and picrocrocin. Different tuber potatoes accumulated crocins and picrocrocin ranging from 19.41-360 to 105-800 mu g/g DW, respectively, with crocetin, crocin 1 [(crocetin-(beta-D-glucosyl)-ester)] and crocin 2 [(crocetin)-(beta-D-glucosyl)-(beta-D-glucosyl)-ester)] being the main compounds detected. The pattern of carotenoids and apocarotenoids were distinct between wild type and transgenic tubers and were related to changes in the expression of the pathway genes, especially from PSY2, CCD1, and CCD4. In addition, the engineered tubers showed higher antioxidant capacity, up to almost 4-fold more than the wild type, which is a promising sign for the potential health advantages of these lines. In order to better investigate these aspects, different cooking methods were applied, and each process displayed a significant impact on the retention of apocarotenoids. More in detail, the in vitro bioaccessibility of these metabolites was found to be higher in boiled potatoes (97.23%) compared to raw, baked, and fried ones (80.97, 78.96, and 76.18%, respectively). Overall, this work shows that potatoes can be engineered to accumulate saffron apocarotenoids that, when consumed, can potentially offer better health benefits. Moreover, the high bioaccessibility of these compounds revealed that potato is an excellent way to deliver crocins and picrocrocin, while also helping to improve its nutritional value

    Fortification and bioaccessibility of saffron apocarotenoids in potato tubers

    Get PDF
    Carotenoids are C40 isoprenoids with well-established roles in photosynthesis, pollination, photoprotection, and hormone biosynthesis. The enzymatic or ROS-induced cleavage of carotenoids generates a group of compounds named apocarotenoids, with an increasing interest by virtue of their metabolic, physiological, and ecological activities. Both classes are used industrially in a variety of fields as colorants, supplements, and bio-actives. Crocins and picrocrocin, two saffron apocarotenoids, are examples of high-value pigments utilized in the food, feed, and pharmaceutical industries. In this study, a unique construct was achieved, namely O6, which contains CsCCD2L, UGT74AD1, and UGT709G1 genes responsible for the biosynthesis of saffron apocarotenoids driven by a patatin promoter for the generation of potato tubers producing crocins and picrocrocin. Different tuber potatoes accumulated crocins and picrocrocin ranging from 19.41–360 to 105–800 μg/g DW, respectively, with crocetin, crocin 1 [(crocetin-(β-D-glucosyl)-ester)] and crocin 2 [(crocetin)-(β-D-glucosyl)-(β-D-glucosyl)-ester)] being the main compounds detected. The pattern of carotenoids and apocarotenoids were distinct between wild type and transgenic tubers and were related to changes in the expression of the pathway genes, especially from PSY2, CCD1, and CCD4. In addition, the engineered tubers showed higher antioxidant capacity, up to almost 4-fold more than the wild type, which is a promising sign for the potential health advantages of these lines. In order to better investigate these aspects, different cooking methods were applied, and each process displayed a significant impact on the retention of apocarotenoids. More in detail, the in vitro bioaccessibility of these metabolites was found to be higher in boiled potatoes (97.23%) compared to raw, baked, and fried ones (80.97, 78.96, and 76.18%, respectively). Overall, this work shows that potatoes can be engineered to accumulate saffron apocarotenoids that, when consumed, can potentially offer better health benefits. Moreover, the high bioaccessibility of these compounds revealed that potato is an excellent way to deliver crocins and picrocrocin, while also helping to improve its nutritional value

    A soil fungus confers plant resistance against a phytophagous insect by disrupting the symbiotic role of its gut microbiota

    Get PDF
    Plants generate energy flows through natural food webs, driven by competition for resources among organisms, which are part of a complex network of multitrophic interactions. Here, we demonstrate that the interaction between tomato plants and a phytophagous insect is driven by a hidden interplay between their respective microbiotas. Tomato plants colonized by the soil fungus Trichoderma afroharzianum, a beneficial microorganism widely used in agriculture as a biocontrol agent, negatively affects the development and survival of the lepidopteran pest Spodoptera littoralis by altering the larval gut microbiota and its nutritional support to the host. Indeed, experiments aimed to restore the functional microbial community in the gut allow a complete rescue. Our results shed light on a novel&nbsp;role played by a soil microorganism in the modulation of plant-insect interaction, setting the stage for a more comprehensive analysis of the impact that biocontrol agents may have on ecological sustainability of agricultural systems

    Crocins-rich tomato extracts showed enhanced protective effects in vitro

    Get PDF
    Crocins are high-value water soluble pigments that have long been recognized for their medicinal properties, and whose demand has increased worldwide in recent years. In the present study transgenic tomato fruits engineered for the production of crocins and hp3/Bsh tomato mutants with alterations in the carotenoid metabolism, have been combined to increase the levels of crocins in tomato fruits. Tomato fruits from F4 plants showed high antioxidant capacity and the crocin-rich juice of the produced tomato fruit was protected neuroblastoma cells against oxidative insult, through its ability to activate factor 2 related to nuclear erythroid factor 2 (Nrf2). The bio-accessibility of crocins in the juice showed values similar to the ones observed with saffron. Overall, our results support that crocin-fortified tomatoes could result in higher crocin availability and have additional health-promoting effects and could provide better protection against oxidative stress related chronic diseases in humans.This work was supported by grants BIO2016-77000-R, PID2020-114761RB-I00 from the Spanish Ministerio de Ciencia, Innovación y Universidades and SBPLY/17/180501/000234 and SBPLY/21/180501/000064 from the Junta de Comunidades de Castilla-La Mancha (co-financed European Union FEDER funds) and HARNESSTOM, contract number 101000716 Innovation Action EC-H2020-SFS-2020-1. GD and AG are participants of the European COST action CA18210 (ROXY).Peer reviewe
    corecore