181 research outputs found
The Fundamental Diagram of Pedestrian Movement Revisited
The empirical relation between density and velocity of pedestrian movement is
not completely analyzed, particularly with regard to the `microscopic' causes
which determine the relation at medium and high densities. The simplest system
for the investigation of this dependency is the normal movement of pedestrians
along a line (single-file movement). This article presents experimental results
for this system under laboratory conditions and discusses the following
observations: The data show a linear relation between the velocity and the
inverse of the density, which can be regarded as the required length of one
pedestrian to move. Furthermore we compare the results for the single-file
movement with literature data for the movement in a plane. This comparison
shows an unexpected conformance between the fundamental diagrams, indicating
that lateral interference has negligible influence on the velocity-density
relation at the density domain . In addition we test a
procedure for automatic recording of pedestrian flow characteristics. We
present preliminary results on measurement range and accuracy of this method.Comment: 13 pages, 9 figure
Making a journey in knowledge management strategy
This paper reports results from an ongoing project examining what managers think about knowledge management in the context of their organisation. This was done in a facilitated computerassisted group workshop environment. Here we compare the outcomes of workshops held for two relatively large UK organisations, one public sector and the other private. Our conclusions are that there are relatively few differences between the perceptions of these two groups of managers, and that these differences stem more from the stage of the knowledge management life cycle that the two organisations have reached, rather than from the difference in context between public and private sector. © iKMS & World Scientific Publishing Co
Enhanced empirical data for the fundamental diagram and the flow through bottlenecks
In recent years, several approaches for modelling pedestrian dynamics have
been proposed and applied e.g. for design of egress routes. However, so far not
much attention has been paid to their 'quantitative' validation. This
unsatisfactory situation belongs amongst others on the uncertain and
contradictory experimental data base. The fundamental diagram, i.e. the
density-dependence of the flow or velocity, is probably the most important
relation as it connects the basic parameter to describe the dynamic of crowds.
But specifications in different handbooks as well as experimental measurements
differ considerably. The same is true for the bottleneck flow. After a
comprehensive review of the experimental data base we give an survey of a
research project, including experiments with up to 250 persons performed under
well controlled laboratory conditions. The trajectories of each person are
measured in high precision to analyze the fundamental diagram and the flow
through bottlenecks. The trajectories allow to study how the way of measurement
influences the resulting relations. Surprisingly we found large deviation
amongst the methods. These may be responsible for the deviation in the
literature mentioned above. The results are of particular importance for the
comparison of experimental data gained in different contexts and for the
validation of models.Comment: A contribution to: Pedestrian and Evacuation Dynamics 2008 (Springer)
12 pages, 7 figure
Developing standard pedestrian-equivalent factors: passenger car–equivalent approach for dealing with pedestrian diversity
Similar to vehicular traffic, pedestrians, despite having diverse capabilities and body sizes, can be classified as heterogeneous. The use of vehicular traffic resolves the diversity issue with a conversion of heterogeneous vehicle flow into an equivalent flow with the use of passenger car–equivalent (PCE) factors. Analysis of pedestrian flow has yet to incorporate pedestrian diversity analysis implicitly into the design of pedestrian facilities, although some form of adjustment has been suggested. This paper introduces the concept of PCE-type factors for mixed pedestrian traffic called standard pedestrian-equivalent (SPE) factors. Estimates of SPE factors are made relative to the average commuter. The equivalent total travel time approach for PCE estimation was adapted to consider the effects of the differences in physical and operational characteristics of pedestrians, particularly walking speed and body size. Microsimulation of pedestrians was employed to evaluate hypothetical pedestrian proportions so as to generate corresponding flow relationships. Walking speeds and body sizes were varied across different flow conditions, walkway widths, and proportions of other pedestrian types. The first part of this paper explores how the two pedestrian characteristics (walking speed and body size) influence estimated SPE factors. The second part is a case study in which field-collected data illustrate SPE factors calculated for older adults, obese pedestrians, and their combination. An application of SPE factors demonstrates the robustness of the methodology in bridging the gap between pedestrian compositions and planning practice
Spatial layout planning in sub-surface rail station design for effective fire evacuation
The London Underground network is a crucial part of the transportation system in one of only four ‘Alpha’ world cities. The other three – Paris, New York and Tokyo – also have such sub-surface railway transport systems that may benefit from this shape grammar station design process in a future research proposal. In London’s case, the passenger flow rates are the underlining factor in sizing infrastructure where passengers have access – it is therefore this criterion that provides the basis for the shape grammar formulation for the largest, oldest and one of the most complex underground systems in the world. The research aims to improve passenger fire evacuation times, with due cognisance of the growth of numbers using the system, and its present susceptibility to terrorist attacks taken into account. The proposed shape grammar approach will provide for generation of spatial layouts, based upon visual rules of shape recognition, replacement / union, their connectivity and spatial relationships. The paper concentrates on definition and implementation of novel shape grammar design rules that incorporate station planning design knowledge, and in particular also discusses designers’ fire risk assessment approach and related knowledge that is also needed to produce credible station design solutions. Development, to date, of the proposed artificially intelligent CAD environment is also described along with parallel theoretical research. The proposed CAD interface provides familiarity to the designer and avoids incompatibility issues regarding drawing exchange format between various software systems. The shape grammar layouts produced will be tested in SIMULEX, a commercially available evacuation package, and be compared against ‘traditionally’ designed layouts to demonstrate improvements of preliminary ‘reference’ designs, which follow the standard London Underground design process as a later stage of this research
Mutual Information for the Detection of Crush
Fatal crush conditions occur in crowds with tragic frequency. Event organizers and architects are often criticised for failing to consider the causes and implications of crush, but the reality is that both the prediction and prevention of such conditions offer a significant technical challenge. Full treatment of physical force within crowd simulations is precise but often computationally expensive; the more common method of human interpretation of results is computationally “cheap” but subjective and time-consuming. This paper describes an alternative method for the analysis of crowd behaviour, which uses information theory to measure crowd disorder. We show how this technique may be easily incorporated into an existing simulation framework, and validate it against an historical event. Our results show that this method offers an effective and efficient route towards automatic detection of the onset of crush
Intelligent evacuation management systems: A review
Crowd and evacuation management have been active areas of research and study in the recent past. Various developments continue to take place in the process of efficient evacuation of crowds in mass gatherings. This article is intended to provide a review of intelligent evacuation management systems covering the aspects of crowd monitoring, crowd disaster prediction, evacuation modelling, and evacuation path guidelines. Soft computing approaches play a vital role in the design and deployment of intelligent evacuation applications pertaining to crowd control management. While the review deals with video and nonvideo based aspects of crowd monitoring and crowd disaster prediction, evacuation techniques are reviewed via the theme of soft computing, along with a brief review on the evacuation navigation path. We believe that this review will assist researchers in developing reliable automated evacuation systems that will help in ensuring the safety of the evacuees especially during emergency evacuation scenarios
Decreased Aerobic Exercise Capacity After Long-Term Remission From Cushing Syndrome: Exploration of Mechanisms.
BACKGROUND: Although major improvements are achieved after cure of Cushing syndrome (CS), fatigue and decreased quality of life persist. This is the first study to measure aerobic exercise capacity in patients in remission of CS for more than 4 years in comparison with matched controls, and to investigate whether the reduction in exercise capacity is related to alterations in muscle tissue. METHODS: Seventeen patients were included. A control individual, matched for sex, estrogen status, age, body mass index, smoking, ethnicity, and physical activity level was recruited for each patient. Maximal aerobic capacity (VO2peak) was assessed during incremental bicycle exercise to exhaustion. In 8 individually matched patients and controls, a percutaneous muscle biopsy was obtained and measures were made of cross-sectional areas, capillarization, and oxphos complex IV (COXIV) protein content as an indicator of mitochondrial content. Furthermore, protein content of endothelial nitric oxide synthase (eNOS) and eNOS phosphorylated on serine1177 and of the NAD(P)H-oxidase subunits NOX2, p47phox, and p67phox were measured in the microvascular endothelial layer. FINDINGS: Patients showed a lower mean VO2peak (SD) (28.0 [7.0] vs 34.8 [7.9] ml O2/kg bw/min, P < .01), maximal workload (SD) (176 [49] vs 212 [67] watt, P = .01), and oxygen pulse (SD) (12.0 [3.7] vs 14.8 [4.2] ml/beat, P < .01) at VO2peak. No differences were seen in muscle fiber type-specific cross-sectional area, capillarization measures, mitochondrial content, and protein content of eNOS, eNOS-P-ser1177, NOX2, p47phox, and p67phox. INTERPRETATION: Because differences in muscle fiber and microvascular outcome measures are not statistically significant, we hypothesize that cardiac dysfunction, seen in active CS, persists during remission and limits blood supply to muscles
Pedestrian Traffic: on the Quickest Path
When a large group of pedestrians moves around a corner, most pedestrians do
not follow the shortest path, which is to stay as close as possible to the
inner wall, but try to minimize the travel time. For this they accept to move
on a longer path with some distance to the corner, to avoid large densities and
by this succeed in maintaining a comparatively high speed. In many models of
pedestrian dynamics the basic rule of motion is often either "move as far as
possible toward the destination" or - reformulated - "of all coordinates
accessible in this time step move to the one with the smallest distance to the
destination". Atop of this rule modifications are placed to make the motion
more realistic. These modifications usually focus on local behavior and neglect
long-ranged effects. Compared to real pedestrians this leads to agents in a
simulation valuing the shortest path a lot better than the quickest. So, in a
situation as the movement of a large crowd around a corner, one needs an
additional element in a model of pedestrian dynamics that makes the agents
deviate from the rule of the shortest path. In this work it is shown, how this
can be achieved by using a flood fill dynamic potential field method, where
during the filling process the value of a field cell is not increased by 1, but
by a larger value, if it is occupied by an agent. This idea may be an obvious
one, however, the tricky part - and therefore in a strict sense the
contribution of this work - is a) to minimize unrealistic artifacts, as naive
flood fill metrics deviate considerably from the Euclidean metric and in this
respect yield large errors, b) do this with limited computational effort, and
c) keep agents' movement at very low densities unaltered
- …