10,929 research outputs found

    Techniques and Examples for Zero-g Melting and Solidification Processes

    Get PDF
    Many new processes which can exploit the weightless environment of space have been suggested as possibilities for making improved or unique materials. A large number of these will involve, at some stage, a containerless melt or transfer of molten material Some of the physics and technology problems associated with these processes are discussed. The range of applicability of some new electromagnetic process control methods is also presented

    Laboratory studies of silicon vapor deposition, phase A

    Get PDF
    A system is described capable of carrying out silicon vapor deposition experiments in the low 10 to the minus 10th power torr vacuum range. The system was assembled and tested for use in a program aimed at exploration of vacuum heteroepitaxy of silicon on several substrates of potential interest for photovoltaic applications. An experiment is described in which a silicon layer 2.5 microns thick was deposited on a pyrolytically cleaned tungsten substrate held at a temperature of 400 C. Using a resistance heated silicon source, thicker layers can be deposited in periods of hours by utilizing closer source to substrate distances

    Remote soil moisture measurements

    Get PDF
    The degree of polarization of visible sunlight reflected from bare soils in agricultural test areas in the southwestern United States was measured by an airborne photopolarimeter. Surface soil specimens provided data concerning the surface moisture of the soil to which the polarization data were compared. The results indicate the feasibility of measuring soil surface moisture by airborne polarimeter instrumentation

    Ultimate intrinsic coercivity samarian-cobalt magnet. An Earth based feasibility study for Space Shuttle missions

    Get PDF
    Techniques for the electromagnetic containerless reaction of samarium with cobalt for the formation of samarium-cobalt alloys are summarized. The effort expended to reduce and instrument the oxygen partial pressure in the reaction chamber and coolant gas system are described as well as the experiments in which these improvements were shown to be partially effective. A stainless steel glove box capable of being evacuated to low 10 to the -6th torr pressure and refilled with ultra-pure argon was built and installed. Necessary accessories to perform SmCo5 powder preparation, compaction and subsequent encapsulation of the powder inside a hot isostatic pressing cannister were designed, built, and incorporated into the chamber. All accessories were tested for proper functioning inside the chamber. Using the facility, the first batch of densified SmCo5 powder was fabricated to near total density. Analysis of the densified compacts shows that oxygen contamination during fabrication was near zero

    Ultimate intrinsic-coercivity samarium-cobalt magnet: An Earth-based feasibility study for space-shuttle missions

    Get PDF
    Techniques for containerless melting and solidification of the samarium-cobalt alloy without excessive oxidation were developed. The rationale for extending these experiments in a weightless environment is also discussed. The effect of oxygen content from 0.15 to 0.63 weight percent and grain size in the range of 2 to 10 micrometers has been examined on arc-plasma-sprayed SmCo5 magnets. Contrary to expectations, the larger grain sizes tended to improve the coercivities. This was attributed to an increase in homogeneity resulting from higher temperature treatments used to produce larger grain size. No significant differences in coercivity were observed on the basis of oxygen content in the range examined. It is expected that more meaningful data on the relationship between oxygen content and coercivity will be seen when the oxygen content can be lowered to less than 0.1 weight percent

    Electromagnetic containerless processing requirements and recommended facility concept and capabilities for space lab

    Get PDF
    Containerless melting, reaction, and solidification experiments and processes which potentially can lead to new understanding of material science and production of new or improved materials in the weightless space environment are reviewed in terms of planning for spacelab. Most of the experiments and processes discussed are amenable to the employment of electromagnetic position control and electromagnetic induction or electron beam heating and melting. The spectrum of relevant properties of materials, which determine requirements for a space laboratory electromagnetic containerless processing facility are reviewed. Appropriate distributions and associated coil structures are analyzed and compared on the basis of efficiency, for providing the functions of position sensing, control, and induction heating. Several coil systems are found capable of providing these functions. Exchangeable modular coils in appropriate sizes are recommended to achieve the maximum power efficiencies, for a wide range of specimen sizes and resistivities, in order to conserve total facility power

    Capacity Requirements of Traffic Handling Schemes in Multi-Service Networks

    Get PDF
    Cataloged from PDF version of article.This paper deals with the impact of traffic handling mechanisms on capacity for different network architectures. Three traffic handling models are considered: per-flow, class-based and best-effort (BE). These models can be used to meet service guarantees, the major differences being in their complexity of implementations and in the quantity of network resources that must be provided. In this study, the performance is fixed and the required capacity determined for various combinations of traffic handling architectures for edge-core networks. This study provides a comparison of different QoS architectures. One key result of this work is that on the basis of capacity requirements, there is no significant difference between semi-aggregate traffic handling and per-flow traffic handling. However, best-effort handling requires significantly more capacity as compared to the other methods. (C) 2004 Elsevier B.V. All rights reserve

    Investigation of the preparation of materials in space. Task 4 - Field management for weightless containerless processing Quarterly progress report, 22 Aug. - 31 Oct. 1969

    Get PDF
    Weightless containerless processing for space, electromagnetic position control, force measurements and techniques, and hydrodynamic

    Nonlinear Dynamics of Composite Fermions in Nanostructures

    Full text link
    We outline a theory describing the quasi-classical dynamics of composite fermions in the fractional quantum Hall regime in the potentials of arbitrary nanostructures. By an appropriate parametrization of time we show that their trajectories are independent of their mass and dispersion. This allows to study the dynamics in terms of an effective Hamiltonian although the actual dispersion is as yet unknown. The applicability of the theory is verified in the case of antidot arrays where it explains details of magnetoresistance measurements and thus confirms the existence of these quasiparticles.Comment: submitted to Europhys. Lett., 4 pages, postscrip

    Performance of AAOmega: the AAT multi-purpose fibre-fed spectrograph

    Full text link
    AAOmega is the new spectrograph for the 2dF fibre-positioning system on the Anglo-Australian Telescope. It is a bench-mounted, double-beamed design, using volume phase holographic (VPH) gratings and articulating cameras. It is fed by 392 fibres from either of the two 2dF field plates, or by the 512 fibre SPIRAL integral field unit (IFU) at Cassegrain focus. Wavelength coverage is 370 to 950nm and spectral resolution 1,000-8,000 in multi-Object mode, or 1,500-10,000 in IFU mode. Multi-object mode was commissioned in January 2006 and the IFU system will be commissioned in June 2006. The spectrograph is located off the telescope in a thermally isolated room and the 2dF fibres have been replaced by new 38m broadband fibres. Despite the increased fibre length, we have achieved a large increase in throughput by use of VPH gratings, more efficient coatings and new detectors - amounting to a factor of at least 2 in the red. The number of spectral resolution elements and the maximum resolution are both more than doubled, and the stability is an order of magnitude better. The spectrograph comprises: an f/3.15 Schmidt collimator, incorporating a dichroic beam-splitter; interchangeable VPH gratings; and articulating red and blue f/1.3 Schmidt cameras. Pupil size is 190mm, determined by the competing demands of cost, obstruction losses, and maximum resolution. A full suite of VPH gratings has been provided to cover resolutions 1,000 to 7,500, and up to 10,000 at particular wavelengths.Comment: 13 pages, 4 figures; presented at SPIE, Astronomical Telescopes and Instrumentation, 24 - 31 May 2006, Orlando, Florida US
    corecore