159 research outputs found

    The contribution of weathering of the main Alpine rivers on the global carbon cycle

    Get PDF
    On geological time-scales the carbon fluxes from the solid Earth to the atmosphere mainly result from volcanism and metamorphic-decarbonation processes, whereas the carbon fluxes from atmosphere to solid Earth mainly depend on weathering of silicates and carbonates, biogenic precipitation and removal of CaCO3 in the oceans and volcanic gases – seawater interactions. Quantifying each contribution is critical. In this work, we estimate the atmospheric CO2 uptake by weathering in the Alps, using results of the study of the dissolved loads transported by 33 main Alpine rivers. The chemical composition of river water in unpolluted areas is a good indicator of surface weathering processes (Garrels and Mackenzie, 1971; Drever, 1982; Meybeck, 1984; Tardy, 1986; Berner and Berner, 1987; Probst et al., 1994). The dissolved load of streams originates from atmospheric input, pollution, evaporite dissolution, and weathering of carbonate and silicate rocks, and the application of mass balance calculations allows quantification of the different contributions. In this work, we applied the MEGA (Major Element Geochemical Approach) geochemical code (Amiotte Suchet, 1995; Amiotte Suchet and Probst, 1996) to the chemical compositions of the selected rivers in order to quantify the atmospheric CO2 consumed by weathering in Alpine region. The drainage basins of the main Alpine rivers were sampled near the basin outlets during dry and flood seasons. The application of the MEGA geochemical consisted in several steps. First, we subtracted the rain contribution in river waters knowing the X/Cl (X = Na, K, Mg, Ca) ratios of the rain. Next, we considered that all (Na+K) came from silicate weathering. The average molar ratio Rsil = (Na+K)/(Ca+Mg) for rivers draining silicate terrains was estimated from unpolluted French stream waters draining small monolithological basins (Meybeck, 1986; 1987). For the purpose, we prepared a simplified geo-lithological map of Alps according to the lithological classification of Meybeck (1986, 1987). Then for each basin we computed Rsil weighted average considering the surface and the mean precipitation for the surface area of each lithology. Lastly, we estimated the (Ca+Mg) originating from carbonate weathering as the remaining cations after silicate correction. Depending on time-scales of the phenomena (shorter than about 1 million year i.e. correlated to the short term carbon cycle, or longer than about 1 million years i.e. correlated to the long-term carbon cycle), we considered different equations for the quantification of the atmospheric CO2 consumed by weathering (Huh, 2010). The results show the net predominance of carbonate weathering on fixing atmospheric CO2 and that, considering the long-term carbon cycle, the amount of atmospheric CO2 uptake by weathering is about one order of magnitude lower than considering the short-term carbon cycle. Moreover, considering the short-term carbon cycle, the mean CO2 consumed by Alpine basins is of the same order of magnitude of the mean CO2 consumed by weathering by the 60 largest rivers of the world estimated by Gaillardet et al. (1999)

    Consumption of Atmospheric Carbon Dioxide through Weathering of Ultramafic Rocks in the Voltri Massif (Italy): Quantification of the Process and Global Implications

    Get PDF
    Chemical weathering is the main natural mechanism limiting the atmospheric carbon dioxide levels on geologic time scales (>1 Ma) but its role on shorter time scales is still debated, highlighting the need for an increase of knowledge about the relationships between chemical weathering and atmospheric CO2 consumption. A reliable approach to study the weathering reactions is the quantification of the mass fluxes in and out of mono lithology watershed systems. In this work the chemical weathering and atmospheric carbon dioxide consumption of ultramafic rocks have been studied through a detailed geochemical mass balance of three watershed systems located in the metaophiolitic complex of the Voltri Massif (Italy). Results show that the rates of carbon dioxide consumption of the study area (weighted average = 3.02 1.67 105 mol km2 y1) are higher than the world average CO2 consumption rate and are well correlated with runo, probably the stronger weathering controlling factor. Computed values are very close to the global average of basic and ultrabasic magmatic rocks, suggesting that Voltri Massif is a good proxy for the study of the feedbacks between chemical weathering, CO2 consumption, and climate change at a global scale

    An Endorheic Lake in a Changing Climate: Geochemical Investigations at Lake Trasimeno (Italy)

    Get PDF
    Lake Trasimeno is a shallow, endorheic lake located in central Italy. It is the fourth Italian largest lake and is one of the largest endorheic basins in western Europe. Because of its shallow depth and the absence of natural outflows, the lake, in historical times, alternated from periods of floods to strong decreases of the water level during periods of prolonged drought. Lake water is characterised by a NaCl composition and relatively high salinity. The geochemical and isotopic monitoring of lake water from 2006 to 2018 shows the presence of well-defined seasonal trends, strictly correlated to precipitation regime and evaporation. These trends are clearly highlighted by the isotopic composition of lake water (δ18O and δD) and by the variations of dissolved mobile species. In the long term, a progressive warming of lake water and a strong increase of total dissolved inorganic solids have been observed, indicating Lake Trasimeno as a paradigmatic example of how climate change can cause large variations of water quality and quantity. Furthermore, the rate of variation of lake water temperature is very close to the rate of variation of land-surface air temperature, LSAT, suggesting that shallow endorheic lakes can be used as a proxy for global warming measurements

    Measuring and interpreting CO2 fluxes at regional scale: the case of the Apennines, Italy

    Get PDF
    Tectonically active regions are often characterized by large amounts of carbon dioxide degassing, and estimation of the total CO2 discharged to the atmosphere from tectonic structures, hydrothermal systems and inactive volcanic areas is crucial for the definition of present-day global Earth degassing. The carbon balance of regional aquifers is a powerful tool to quantify the diffuse degassing of deep inorganic carbon sources because the method integrates the CO2 flux over large areas. Its application to peninsular Italy shows that the region is characterized by specific CO2 fluxes higher than the baseline determined for the geothermal regions of the world, and that the amount of endogenous CO2 discharged through diffuse regional degassing (c. 2.1 × 1011 mol a−1) is the major component of the geological CO2 budget of Italy, definitely prevailing over the CO2 discharged by Italian active volcanoes and volcanoes with hydrothermal activity. Furthermore, the positive correlation between geothermal heat and deep CO2 dissolved in the groundwater of central Italy suggests that (1) the geothermal heat is transported into the aquifers by the same hot CO2-rich fluids causing the Italian CO2 anomaly and (2) the advective heat flow is the dominant form of heat transfer of the region. Supplementary material: The location, flow rate, extent of the hydrogeological basin, chemical and isotopic analyses of the 160 springs considered in this study, and the results of the carbon mass balance are reported in a table available at https://doi.org/10.6084/m9.figshare.c.423702

    Chemical weathering and consumption of atmospheric carbon dioxide in the Alpine region

    Get PDF
    To determine the CO2 consumption due to chemical weathering in the Alps, water samples from the 32 main Alpine rivers were collected and analysed in two periods, spring 2011 and winter 2011/2012. Most of the river waters are characterized by a bicarbonate earth-alkaline composition with some samples showing a clear enrich-ment in sulphates and other samples showing a slight enrichment in alkaline metals. The amount of total dissolved solids (TDS) ranges between 96 and 551 mg/L. Considering the major ion composition and the Sr isotopic composition of water samples, coherently with the geological setting of the study area, three major reservoirs of dissolved load have been recognized: carbonates, evaporites and silicates. Based on a chemical mass balance, the flux of dissolved solids, and the flux of carbon dioxide consumed by chemical weathering have been computed for each basin and for the entire study area. Results show that the flux of dissolved solids, ranges from 8 × 103 to 411 × 103 kg km−2 y−1, with an average value of 127 × 103 kg km−2 y−1, while the flux of carbon dioxide consumed by chemical weathering in the short-term (b1 Ma) is 5.03 × 105 mol km−2 y−1 1 on average. Since part of the CO2 is returned to the atmosphere through carbonate precipitation and reverse weathering once river water reaches the ocean, the CO2 removed from the atmosphere/soil system in the long-term (N1 Ma) is much smaller than the CO2 consumed in the short-term and according to our calculations amounts to 2.01 × 104 mol km−2 y−1 on average. This value is almost certainly a minimum estimate of the total amount of CO2 fixed by weathering on the long-term because in our calculations we assumed that all the alkaline metals deriving from rock weathering in the continents are rapidly involved in the process of reverse weathering in the oceans, while there are still large uncertainties on the magnitude and significance of this process. The values of CO2 flux consumed by weathering are strongly correlated with runoff while other potential controlling factors show only weak correlations or no correlation. Our estimation of the CO2 consumed by weathering in the Alpine basins is in the same order of magnitude, but higher than the world average and is consistent with previ-ous estimations made in river basins with similar climatic conditions and similar latitudes

    Carbon dixide emission in Italy: Shallow crustal sources or subduction related fluid recycling?

    Get PDF
    Anomalous non-volcanic CO2 release in central and southern Italy has been highlighted by ten years of detailed investigations on Earth degassing processes. Two regional degassing structures are located in the Tyrrhenian sector where more then 200 emissions of CO2 are located and has been recently included in the first web based catalogue of degassing sites (http://googas.ov.ingv.it). The total amount of CO2 released by the two structures were evaluated to be > 2×1011 mol a-1 ( >10% of the estimated global volcanic CO2 emission). The anomalous flux of CO2 suddenly disappears in the Apennine in correspondence of a narrow band where most of the Italian seismicity concentrates. Here, at depth, the gas accumulates in crustal traps generating CO2 overpressurised reservoirs. These overpressured structures are, in our opinion, one of the main cause of Apennine earthquake activation processes. The results of these investigations suggested that Earth degassing in Italy may have an active primary role in the geodynamics of the region. What is the origin of gas? The large extension of the degassing structures and petrologic data suggested that the main source of gas is a mantle metasomatised by the fluids produced in the subdacted slabs. However, has been also hypothesised the presence of localised crustal source of the gas. This matter will be discussed on the base of unpublished isotopic data of the main gas emissions

    The Achievements of the RockStar Group (Perugia) on Astrophysical Modelling and Pallasite Geochemistry

    Get PDF
    In the present work we summarize the first achievements of the RockStar Group of the Department of Physics and Geology (at the University of Perugia, Italy), which is made of a strict collaboration between Physicists and Geologists on astrophysical and planetological studies. The RockStar Group acts on two research lines: (i) astrophysical modeling and (ii) mineralogical and geochemical studies of meteorites. In the first part of the article we review the recent results concerning the development of theoretical modeling of nucleosynthesis and mixing process in asymptotic giant branch. In the second part we report (1) the catalog of the Meteorite collection of University of Perugia and (2) major and trace elements mapping, performed through EPMA and LA-ICP-MS, of the Mineo pallasite, a unique sample hosted by the collection. The new data constrain the Mineo meteorite among the Main Group Pallasites and support the hypothesis of the "early giant impact" formation

    One year of geochemical monitoring of groundwater in the Abruzzi region after the 2009 earthquakes.

    Get PDF
    The presence of a deep and inorganic source of CO2 has been recently recognized in Italy on the basis of the deeply derived carbon dissolved in the groundwater. In particular, the regional map of CO2 Earth degassing shows that two large degassing structures (Tuscan Roman degassing structure, TRDS, and Campanian degassing structure, CDS) affect the Tyrrhenian side of the Italian peninsula. The comparison between the map of CO2 Earth degassing and of the location of the Italian earthquakes highlights that the anomalous CO2 flux suddenly disappears in the Apennine in correspondence of a narrow band where most of the seismicity concentrates. A previous conceptual model proposed that in this area, at the eastern borders of TRDS and CDS, the CO2 from the mantle wedge intrudes the crust and accumulate in structural traps generating over-pressurized reservoirs. These CO2 over-pressurized levels can play a major role in triggering the Apennine earthquakes. The 2009 Abruzzo earthquakes, like previous seismic crises in the Northern Apennine, occurred at the border of the TRDS, suggesting also in this case a possible role played by deeply derived fluids in the earthquake generation. Detailed hydro-geochemical campaigns, with a monthly frequency, started immediately after the main shock of the 6th of April 2009. The new campaigns include the main springs of the area which were previously studied in detail, during a campaign performed ten years ago, constituting a pre-crisis reference case. Almost one year of geochemical data of the main dissolved ions, of dissolved gases (CO2, CH4, N2, Ar, He) and of the stable isotopes of the water (H, O), CO2 (13C) and He (3He/4He), highlight both that the epicentral area of L’Aquila earthquakes is affected by an important process of CO2 Earth degassing and that that the gases dissolved in the groundwater reflects the input in to the aquifers of a deep gas phase, CO2- rich, with an high He content and with low 3He/4He ratios, similar to the gases emitted by natural manifestations located in the northern Apennines which are fed by deep pressurized reservoirs. Furthermore a systematic increase in the content of the deeply derived CO2 dissolved in the aquifers occurred respect to the July 1997 samples. This increase, followed by a gentle decline of the anomaly, can be compatible with the occurrence of an episode of deep CO2 degassing concurrently with the earthquakes. The origin of this regional variation is under investigation and, at the present moment, an unambiguous interpretation of the data is not possible because the lack of a systematic monitoring of the springs before the seismic events and because eventual seasonal effects on observed variation in CO2 flux are still under investigatio
    corecore