3,816 research outputs found
First-order modal logic in the necessary framework of objects
I consider the first-order modal logic which counts as valid those sentences which are true on every interpretation of the non-logical constants. Based on the assumptions that it is necessary what individuals there are and that it is necessary which propositions are necessary, Timothy Williamson has tentatively suggested an argument for the claim that this logic is determined by a possible world structure consisting of an infinite set of individuals and an infinite set of worlds. He notes that only the cardinalities of these sets matters, and that not all pairs of infinite sets determine the same logic. I use so-called two-cardinal theorems from model theory to investigate the space of logics and consequence relations determined by pairs of infinite sets, and show how to eliminate the assumption that worlds are individuals from Williamsonās argument
Post Completeness in Congruential Modal Logics
Well-known results due to David Makinson show that there are exactly two Post complete normal modal logics, that in both of them, the modal operator is truth-functional, and that every consistent normal modal logic can be extended to at least one of them. Lloyd Humberstone has recently shown that a natural analog of this result in congruential modal logics fails, by showing that not every congruential modal logic can be extended to one in which the modal operator is truth-functional. As Humberstone notes, the issue of Post completeness in congruential modal logics is not well understood. The present article shows that in contrast to normal modal logics, the extent of the property of Post completeness among congruential modal logics depends on the background set of logics. Some basic results on the corresponding properties of Post completeness are established, in particular that although a congruential modal logic is Post complete among all modal logics if and only if its modality is truth-functional, there are continuum many modal logics Post complete among congruential modal logics
Standard State Space Models of Unawareness
The impossibility theorem of Dekel, Lipman and Rustichini has been thought to demonstrate
that standard state-space models cannot be used to represent unawareness. We first show that Dekel,
Lipman and Rustichini do not establish this claim. We then distinguish three notions of awareness,
and argue that although one of them may not be adequately modeled using standard state spaces,
there is no reason to think that standard state spaces cannot provide models of the other two notions.
In fact, standard space models of these forms of awareness are attractively simple. They allow us
to prove completeness and decidability results with ease, to carry over standard techniques from
decision theory, and to add propositional quantifiers straightforwardly
Counting Incompossibles
We often speak as if there are merely possible peopleāfor example, when we make such claims as that most possible people are never going to be born. Yet most metaphysicians deny that anything is both possibly a person and never born. Since our unreflective talk of merely possible people serves to draw non-trivial distinctions, these metaphysicians owe us some paraphrase by which we can draw those distinctions without committing ourselves to there being merely possible people. We show that such paraphrases are unavailable if we limit ourselves to the expressive resources of even highly infinitary first-order modal languages. We then argue that such paraphrases are available in higher-order modal languages only given certain strong assumptions concerning the metaphysics of properties. We then consider alternative paraphrase strategies, and argue that none of them are tenable. If talk of merely possible people cannot be paraphrased, then it must be taken at face value, in which case it is necessary what individuals there are. Therefore, if it is contingent what individuals there are, then the demands of paraphrase place tight constraints on the metaphysics of properties: either (i) it is necessary what properties there are, or (ii) necessarily equivalent properties are identical, and having properties does not entail even possibly being anything at all
Higher-Order Contingentism, Part 1: Closure and Generation
This paper is a study of higher-order contingentism ā the view, roughly, that it is contingent what properties and propositions there are. We explore the motivations for this view and various ways in which it might be developed, synthesizing and expanding on work by Kit Fine, Robert Stalnaker, and Timothy Williamson. Special attention is paid to the question of whether the view makes sense by its own lights, or whether articulating the view requires drawing distinctions among possibilities that, according to the view itself, do not exist to be drawn. The paper begins with a non-technical exposition of the main ideas and technical results, which can be read on its own. This exposition is followed by a formal investigation of higher-order contingentism, in which the tools of variable-domain intensional model theory are used to articulate various versions of the view, understood as theories formulated in a higher-order modal language. Our overall assessment is mixed: higher-order contingentism can be fleshed out into an elegant systematic theory, but perhaps only at the cost of abandoning some of its original motivations
Operator arguments revisited
Certain passages in Kaplanās āDemonstrativesā are often taken to show that non-vacuous sentential operators associated with a certain parameter of sentential truth require a corresponding relativism concerning assertoric contents: namely, their truth values also must vary with that parameter. Thus, for example, the non-vacuity of a temporal sentential operator āalwaysā would require some of its operands to have contents that have different truth values at different times. While making no claims about Kaplanās intentions, we provide several reconstructions of how such an argument might go, focusing on the case of time and temporal operators as an illustration. What we regard as the most plausible reconstruction of the argument establishes a conclusion similar enough to that attributed to Kaplan. However, the argument overgenerates, leading to absurd consequences. We conclude that we must distinguish assertoric contents from compositional semantic values, and argue that once they are distinguished, the argument fails to establish any substantial conclusions. We also briefly discuss a related argument commonly attributed to Lewis, and a recent variant due to Weber
Robust sparse principal component analysis.
A method for principal component analysis is proposed that is sparse and robust at the same time. The sparsity delivers principal components that have loadings on a small number of variables, making them easier to interpret. The robustness makes the analysis resistant to outlying observations. The principal components correspond to directions that maximize a robust measure of the variance, with an additional penalty term to take sparseness into account. We propose an algorithm to compute the sparse and robust principal components. The method is applied on several real data examples, and diagnostic plots for detecting outliers and for selecting the degree of sparsity are provided. A simulation experiment studies the loss in statistical efficiency by requiring both robustness and sparsity.Dispersion measure; Projection-pursuit; Outliers; Variable selection;
- ā¦