91 research outputs found

    Comparative Study of Human and Automated Screening for Antinuclear Antibodies by Immunofluorescence on HEp-2 Cells

    Get PDF
    Background: Several automated systems had been developed in order to reduce inter-observer variability in indirect immunofluorescence (IIF) interpretation. We aimed to evaluate the performance of a processing system in antinuclear antibodies (ANA) screening on HEp-2 cells. Patients and Methods: This study included 64 ANA-positive sera and 107 ANA-negative sera that underwent IIF on two commercial kits of HEp-2 cells (BioSystems® and Euroimmun®). IIF results were compared with a novel automated interpretation system, the “CyclopusCADImmuno®” (CAD). Results: All ANA-positive sera images were recognized as positive by CAD (sensitivity = 100%), while 17 (15.9%) of the ANA-negative sera images were interpreted as positive (specificity = 84.1%), =0.799 (SD=0.045). Comparison of IIF pattern determination between human and CAD system revealed on HEp-2 (BioSystems®), a complete concordance in 6 (9.37%) sera, a partial concordance (sharing of at least 1 pattern) in 42 (65.6%) cases and in 16 (25%) sera the pattern interpretation was discordant. Similarly, on HEp-2 (Euroimmun®) the concordance in pattern interpretation was total in 5 (7.8%) sera, partial in 39 (60.9%) and absent in 20 (31.25%). For both tested HEp-2 cells kits agreement was enhanced for the most common patterns, homogenous, fine speckled and coarse speckled. While there was an issue in identification of nucleolar, dots and nuclear membranous patterns by CAD. Conclusion: Assessment of ANA by IIF on HEp-2 cells using the automated interpretation system, the “CyclopusCADImmuno®” is a reliable method for positive/negative differentiation. Continuous integration of IIF images would improve the pattern identification by the CAD

    Computer-Assisted Classification Patterns in Autoimmune Diagnostics: The AIDA Project

    Get PDF
    Antinuclear antibodies (ANAs) are significant biomarkers in the diagnosis of autoimmune diseases in humans, done by mean of Indirect ImmunoFluorescence (IIF)method, and performed by analyzing patterns and fluorescence intensity. This paper introduces the AIDA Project (autoimmunity: diagnosis assisted by computer) developed in the framework of an Italy-Tunisia cross-border cooperation and its preliminary results. A database of interpreted IIF images is being collected through the exchange of images and double reporting and a Gold Standard database, containing around 1000 double reported images, has been settled. The Gold Standard database is used for optimization of aCAD(Computer AidedDetection) solution and for the assessment of its added value, in order to be applied along with an Immunologist as a second Reader in detection of autoantibodies. This CAD system is able to identify on IIF images the fluorescence intensity and the fluorescence pattern. Preliminary results show that CAD, used as second Reader, appeared to perform better than Junior Immunologists and hence may significantly improve their efficacy; compared with two Junior Immunologists, the CAD system showed higher Intensity Accuracy (85,5% versus 66,0% and 66,0%), higher Patterns Accuracy (79,3% versus 48,0% and 66,2%), and higher Mean Class Accuracy (79,4% versus 56,7% and 64.2%)

    Preliminary results of the project A.I.D.A. (Auto Immunity: Diagnosis Assisted by computer)

    Get PDF
    In this paper, are presented the preliminary results of the A.I.D.A. (Auto Immunity: Diagnosis Assisted by computer) project which is developed in the frame of the cross-border cooperation Italy-Tunisia. According to the main objectives of this project, a database of interpreted Indirect ImmunoFluorescence (IIF) images on HEp 2 cells is being collected thanks to the contribution of Italian and Tunisian experts involved in routine diagnosis of autoimmune diseases. Through exchanging images and double reporting; a Gold Standard database, containing around 1000 double reported IIF images with different patterns including negative tests, has been settled. This Gold Standard database has been used for optimization of a computing solution (CADComputer Aided Detection) and for assessment of its added value in order to be used along with an immunologist as a second reader in detection of auto antibodies for autoimmune disease diagnosis. From the preliminary results obtained, the CAD appeared more powerful than junior immunologists used as second readers and may significantly improve their efficacy

    Ecomorphology of Carnivora challenges convergent evolution

    Get PDF
    Convergent evolution is often reported in the mammalian order Carnivora. Their adaptations to particularly demanding feeding habits such as hypercarnivory and durophagy (consumption of tough food) appear to favour morphological similarities between distantly related species, especially in the skull. However, phylogenetic effect in phenotypic data might obscure such a pattern. We first validated the hypotheses that extant hypercarnivorous and durophagous large carnivorans converge in mandibular shape and form (size and shape). Hypercarnivores generally exhibit smaller volumes of the multidimensional shape and form space than their sister taxa, but this pattern is significantly different from random expectation only when hunting behaviour categorisations are taken into account. Durophages share areas of the morphospace, but this seems to be due to factors of contingency. Carnivorans that hunt in pack exhibit incomplete convergence while even stronger similarities occur in the mandible shape of solitary hunters due to the high functional demands in killing the prey. We identified a stronger phylogenetic signal in mandibular shape than in size. The quantification of evolutionary rates of changes suggests that mandible shape of solitary hunters evolved slowly when compared with other carnivorans. These results consistently indicate that the need for a strong bite force and robust mandible override sheer phylogenetic effect in solitary hunters

    Multigene phylogeny of the Mustelidae: Resolving relationships, tempo and biogeographic history of a mammalian adaptive radiation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Adaptive radiation, the evolution of ecological and phenotypic diversity from a common ancestor, is a central concept in evolutionary biology and characterizes the evolutionary histories of many groups of organisms. One such group is the Mustelidae, the most species-rich family within the mammalian order Carnivora, encompassing 59 species classified into 22 genera. Extant mustelids display extensive ecomorphological diversity, with different lineages having evolved into an array of adaptive zones, from fossorial badgers to semi-aquatic otters. Mustelids are also widely distributed, with multiple genera found on different continents. As with other groups that have undergone adaptive radiation, resolving the phylogenetic history of mustelids presents a number of challenges because ecomorphological convergence may potentially confound morphologically based phylogenetic inferences, and because adaptive radiations often include one or more periods of rapid cladogenesis that require a large amount of data to resolve.</p> <p>Results</p> <p>We constructed a nearly complete generic-level phylogeny of the Mustelidae using a data matrix comprising 22 gene segments (~12,000 base pairs) analyzed with maximum parsimony, maximum likelihood and Bayesian inference methods. We show that mustelids are consistently resolved with high nodal support into four major clades and three monotypic lineages. Using Bayesian dating techniques, we provide evidence that mustelids underwent two bursts of diversification that coincide with major paleoenvironmental and biotic changes that occurred during the Neogene and correspond with similar bursts of cladogenesis in other vertebrate groups. Biogeographical analyses indicate that most of the extant diversity of mustelids originated in Eurasia and mustelids have colonized Africa, North America and South America on multiple occasions.</p> <p>Conclusion</p> <p>Combined with information from the fossil record, our phylogenetic and dating analyses suggest that mustelid diversification may have been spurred by a combination of faunal turnover events and diversification at lower trophic levels, ultimately caused by climatically driven environmental changes. Our biogeographic analyses show Eurasia as the center of origin of mustelid diversity and that mustelids in Africa, North America and South America have been assembled over time largely via dispersal, which has important implications for understanding the ecology of mustelid communities.</p
    corecore