101 research outputs found

    European intensive care physicians’ experience of infections due to antibiotic-resistant bacteria

    Get PDF
    Background Antimicrobial resistance (AMR) compromises the treatment of patients with serious infections in intensive care units (ICUs), and intensive care physicians are increasingly facing patients with bacterial infections with limited or no adequate therapeutic options. A survey was conducted to assess the intensive care physicians' perception of the AMR situation in the European Union/European Economic Area (EU/EEA). Methods Between May and July 2017, physicians working in European ICUs were invited to complete an online questionnaire hosted by the European Society of Intensive Care Medicine. The survey included 20 questions on hospital and ICU characteristics, frequency of infections with multidrug-resistant (MDR) bacteria and relevance of AMR in the respondent's ICU, management of antimicrobial treatment as well as the use of last-line antibiotics in the six months preceding the survey. For the analysis of regional differences, EU/EEA countries were grouped into the four sub-regions of Eastern, Northern, Southern and Western Europe. Results Overall, 1062 responses from four European sub-regions were analysed. Infections with MDR bacteria in their ICU were rated as a major problem by 257 (24.2%), moderate problem by 360 (33.9%) and minor problem by 391 (36.8%) respondents. Third-generation cephalosporin-resistant Enterobacteriaceae were the most frequently encountered MDR bacteria followed by, in order of decreasing frequency, meticillin-resistant Staphylococcus aureus, carbapenem-resistant Enterobacteriaceae, carbapenem-resistant Pseudomonas aeruginosa and vancomycin-resistant enterococci. Perception of the relevance of the AMR problem and the frequency of specific MDR bacteria varied by European sub-region. Bacteria resistant to all or almost all available antibiotics were encountered by 132 (12.4%) respondents. Many physicians reported not having access to specific last-line antibiotics. Conclusions The percentage of European ICU physicians perceiving AMR as a substantial problem in their ICU is high with variation by sub-region in line with epidemiological studies. The reports of bacteria resistant to almost all available antibiotics and the limited availability of last-line antibiotics in ICUs in the EU/EEA are of concern

    The Receptor for Urokinase Regulates TLR2 Mediated Inflammatory Responses in Neutrophils

    Get PDF
    The urokinase-type plasminogen activator receptor (uPAR), a glycosylphosphatidylinositol (GPI) anchored membrane protein, regulates urokinase (uPA) protease activity, chemotaxis, cell-cell interactions, and phagocytosis of apoptotic cells. uPAR expression is increased in cytokine or bacteria activated cell populations, including macrophages and monocytes. However, it is unclear if uPAR has direct involvement in the response of inflammatory cells, such as neutrophils and macrophages, to Toll like receptor (TLR) stimulation. In this study, we found that uPAR is required for optimal neutrophil activation after TLR2, but not TLR4 stimulation. We found that the expression of TNF-α and IL-6 induced by TLR2 engagement in uPAR-/- neutrophils was less than that in uPAR+/+ (WT) neutrophils. Pretreatment of neutrophils with PI-PLC, which cleaves GPI moieties, significantly decreased TLR2 induced expression of TNF-α in WT neutrophils, but demonstrated only marginal effects on TNF-α expression in PAM treated uPAR-/- neutrophils. IκB-α degradation and NF-κB activation were not different in uPAR-/- or WT neutrophils after TLR2 stimulation. However, uPAR is required for optimal p38 MAPK activation after TLR2 engagement. Consistent with the in vitro findings that uPAR modulates TLR2 engagement induced neutrophil activation, we found that pulmonary and systemic inflammation induced by TLR2, but not TLR4 stimulation is reduced in uPAR-/- mice compared to WT counterparts. Therefore, our data suggest that neutrophil associated uPAR could be a potential target for treating acute inflammation, sepsis, and organ injury related to severe bacterial and other microbial infections in which TLR2 engagement plays a major role

    Electronic Sensors for Assessing Interactions between Healthcare Workers and Patients under Airborne Precautions

    Get PDF
    International audienceBackground: Direct observation has been widely used to assess interactions between healthcare workers (HCWs) and patients but is time-consuming and feasible only over short periods. We used a Radio Frequency Identification Device (RFID) system to automatically measure HCW-patient interactions. Methods: We equipped 50 patient rooms with fixed sensors and 111 HCW volunteers with mobile sensors in two clinical wards of two hospitals. For 3 months, we recorded all interactions between HCWs and 54 patients under airborne precautions for suspected (n=40) or confirmed (n=14) tuberculosis. Number and duration of HCW entries into patient rooms were collected daily. Concomitantly, we directly observed room entries and interviewed HCWs to evaluate their self- perception of the number and duration of contacts with tuberculosis patients. Results: After signal reconstruction, 5490 interactions were recorded between 82 HCWs and 54 tuberculosis patients during 404 days of airborne isolation. Median (interquartile range) interaction duration was 2.1 (0.8-4.4) min overall, 2.3 (0.8-5.0) in the mornings, 1.8 (0.8-3.7) in the afternoons, and 2.0 (0.7-4.3) at night (P,1024). Number of interactions/day/HCW was 3.0 (1.0-6.0) and total daily duration was 7.6 (2.4-22.5) min. Durations estimated from 28 direct observations and 26 interviews were not significantly different from those recorded by the network. Conclusions: The RFID was well accepted by HCWs. This original technique holds promise for accurately and continuously measuring interactions between HCWs and patients, as a less resource-consuming substitute for direct observation. The results could be used to model the transmission of significant pathogens. HCW perceptions of interactions with patients accurately reflected reality

    Understanding the interplay between social and spatial behaviour

    Get PDF
    According to personality psychology, personality traits determine many aspects of human behaviour. However, validating this insight in large groups has been challenging so far, due to the scarcity of multi-channel data. Here, we focus on the relationship between mobility and social behaviour by analysing trajectories and mobile phone interactions of ∼1000 individuals from two high-resolution longitudinal datasets. We identify a connection between the way in which individuals explore new resources and exploit known assets in the social and spatial spheres. We show that different individuals balance the exploration-exploitation trade-off in different ways and we explain part of the variability in the data by the big five personality traits. We point out that, in both realms, extraversion correlates with the attitude towards exploration and routine diversity, while neuroticism and openness account for the tendency to evolve routine over long time-scales. We find no evidence for the existence of classes of individuals across the spatio-social domains. Our results bridge the fields of human geography, sociology and personality psychology and can help improve current models of mobility and tie formation

    Gene Expression during the Generation and Activation of Mouse Neutrophils: Implication of Novel Functional and Regulatory Pathways

    Get PDF
    As part of the Immunological Genome Project (ImmGen), gene expression was determined in unstimulated (circulating) mouse neutrophils and three populations of neutrophils activated in vivo, with comparison among these populations and to other leukocytes. Activation conditions included serum-transfer arthritis (mediated by immune complexes), thioglycollate-induced peritonitis, and uric acid-induced peritonitis. Neutrophils expressed fewer genes than any other leukocyte population studied in ImmGen, and down-regulation of genes related to translation was particularly striking. However, genes with expression relatively specific to neutrophils were also identified, particularly three genes of unknown function: Stfa2l1, Mrgpr2a and Mrgpr2b. Comparison of genes up-regulated in activated neutrophils led to several novel findings: increased expression of genes related to synthesis and use of glutathione and of genes related to uptake and metabolism of modified lipoproteins, particularly in neutrophils elicited by thioglycollate; increased expression of genes for transcription factors in the Nr4a family, only in neutrophils elicited by serum-transfer arthritis; and increased expression of genes important in synthesis of prostaglandins and response to leukotrienes, particularly in neutrophils elicited by uric acid. Up-regulation of genes related to apoptosis, response to microbial products, NFkB family members and their regulators, and MHC class II expression was also seen, in agreement with previous studies. A regulatory model developed from the ImmGen data was used to infer regulatory genes involved in the changes in gene expression during neutrophil activation. Among 64, mostly novel, regulatory genes predicted to influence these changes in gene expression, Irf5 was shown to be important for optimal secretion of IL-10, IP-10, MIP-1α, MIP-1β, and TNF-α by mouse neutrophils in vitro after stimulation through TLR9. This data-set and its analysis using the ImmGen regulatory model provide a basis for additional hypothesis-based research on the importance of changes in gene expression in neutrophils in different conditions

    Accelerated surgery versus standard care in hip fracture (HIP ATTACK): an international, randomised, controlled trial

    Get PDF
    • …
    corecore