2,237 research outputs found

    Magnetic properties of (Fe1−x_{1-x}Cox_x)2_2B alloys and the effect of doping by 5dd elements

    Full text link
    We have explored, computationally and experimentally, the magnetic properties of \fecob{} alloys. Calculations provide a good agreement with experiment in terms of the saturation magnetization and the magnetocrystalline anisotropy energy with some difficulty in describing Co2_2B, for which it is found that both full potential effects and electron correlations treated within dynamical mean field theory are of importance for a correct description. The material exhibits a uniaxial magnetic anisotropy for a range of cobalt concentrations between x=0.1x=0.1 and x=0.5x=0.5. A simple model for the temperature dependence of magnetic anisotropy suggests that the complicated non-monotonous temperature behaviour is mainly due to variations in the band structure as the exchange splitting is reduced by temperature. Using density functional theory based calculations we have explored the effect of substitutional doping the transition metal sublattice by the whole range of 5dd transition metals and found that doping by Re or W elements should significantly enhance the magnetocrystalline anisotropy energy. Experimentally, W doping did not succeed in enhancing the magnetic anisotropy due to formation of other phases. On the other hand, doping by Ir and Re was successful and resulted in magnetic anisotropies that are in agreement with theoretical predictions. In particular, doping by 2.5~at.\% of Re on the Fe/Co site shows a magnetocrystalline anisotropy energy which is increased by 50\% compared to its parent (Fe0.7_{0.7}Co0.3_{0.3})2_2B compound, making this system interesting, for example, in the context of permanent magnet replacement materials or in other areas where a large magnetic anisotropy is of importance.Comment: 15 pages 17 figure

    Heavy-Quark Diffusion and Hadronization in Quark-Gluon Plasma

    Get PDF
    We calculate diffusion and hadronization of heavy quarks in high-energy heavy-ion collisions implementing the notion of a strongly coupled quark-gluon plasma in both micro- and macroscopic components. The diffusion process is simulated using relativistic Fokker-Planck dynamics for elastic scattering in a hydrodynamic background. The heavy-quark transport coefficients in the medium are obtained from non-perturbative TT-matrix interactions which build up resonant correlations close to the transition temperature. The latter also form the basis for hadronization of heavy quarks into heavy-flavor mesons via recombination with light quarks from the medium. The pertinent resonance recombination satisfies energy conservation and provides an equilibrium mapping between quark and meson distributions. The recombination probability is derived from the resonant heavy-quark scattering rate. Consequently, recombination dominates at low transverse momentum (pTp_T) and yields to fragmentation at high pTp_T. Our approach thus emphasizes the role of resonance correlations in the diffusion and hadronization processes. We calculate the nuclear modification factor and elliptic flow of DD- and BB-mesons for Au-Au collisions at the Relativistic Heavy Ion Collider, and compare their decay-electron spectra to available data. We also find that a realistic description of the medium flow is essential for a quantitative interpretation of the data.Comment: 16 pages, 14 figure

    The QCD confinement transition: hadron formation

    Full text link
    We review the foundations and the applications of the statistical and the quark recombination model as hadronization models.Comment: 45 pages, 16 figures, accepted for publication in Landolt-Boernstein Volume 1-23

    A computational study on altered theta-gamma coupling during learning and phase coding

    Get PDF
    There is considerable interest in the role of coupling between theta and gamma oscillations in the brain in the context of learning and memory. Here we have used a neural network model which is capable of producing coupling of theta phase to gamma amplitude firstly to explore its ability to reproduce reported learning changes and secondly to memory-span and phase coding effects. The spiking neural network incorporates two kinetically different GABAA receptor-mediated currents to generate both theta and gamma rhythms and we have found that by selective alteration of both NMDA receptors and GABAA,slow receptors it can reproduce learning-related changes in the strength of coupling between theta and gamma either with or without coincident changes in theta amplitude. When the model was used to explore the relationship between theta and gamma oscillations, working memory capacity and phase coding it showed that the potential storage capacity of short term memories, in terms of nested gamma-subcycles, coincides with the maximal theta power. Increasing theta power is also related to the precision of theta phase which functions as a potential timing clock for neuronal firing in the cortex or hippocampus

    Magnetocaloric effect of gadolinium in high magnetic fields

    Get PDF
    International audienceThe magnetocaloric effect of gadolinium has been measured directly in pulsed magnetic fields up to 62 T. The maximum observed adiabatic temperature change is T ad = 60.5 K, the initial temperature T 0 being just above 300 K. The field dependence of T ad is found to follow the usual H 2/3 law, with a small correction in H 4/3. However, as H is increased, a radical change is observed in the dependence of T ad on T 0 , at H = const. The familiar caret-shaped peak situated at T 0 = T C becomes distinctly asymmetric, its high-temperature slope becoming more gentle and evolving into a broad plateau. For yet higher magnetic fields, μ 0 H 140 T, calculations predict a complete disappearance of the maximum near T C and an emergence of a new very broad maximum far above T C

    Search for the Neutron Decay n→\rightarrow X+γ\gamma where X is a dark matter particle

    Get PDF
    In a recent paper submitted to Physical Review Letters, Fornal and Grinstein have suggested that the discrepancy between two different methods of neutron lifetime measurements, the beam and bottle methods can be explained by a previously unobserved dark matter decay mode, n→\rightarrow X+γ\gamma where X is a dark matter particle. We have performed a search for this decay mode over the allowed range of energies of the monoenergetic gamma ray for X to be a dark matter particle. We exclude the possibility of a sufficiently strong branch to explain the lifetime discrepancy with greater than 4 sigma confidence.Comment: 6 pages 3 figure

    Hard Probes in Heavy Ion Collisions at the LHC: Jet Physics

    Full text link
    We discuss the importance of high-pT hadron and jet measurements in nucleus-nucleus collisions at the CERN Large Hadron Collider.Comment: The writeup of the working group "Jet Physics" for the CERN Yellow Report on "Hard Probes in Heavy Ion Collisions at the LHC", 123 pages. Subgroup convenors: R. Baier, X.N. Wang, U.A. Wiedemann (theory) and I.P. Lokhtin, A. Morsch (experiment). Editor: U.A. Wiedeman

    Enhanced error estimator based on a nearly equilibrated moving least squares recovery technique for FEM and XFEM

    Full text link
    In this paper a new technique aimed to obtain accurate estimates of the error in energy norm using a moving least squares (MLS) recovery-based procedure is presented. We explore the capabilities of a recovery technique based on an enhanced MLS fitting, which directly provides continuous interpolated fields, to obtain estimates of the error in energy norm as an alternative to the superconvergent patch recovery (SPR). Boundary equilibrium is enforced using a nearest point approach that modifies the MLS functional. Lagrange multipliers are used to impose a nearly exact satisfaction of the internal equilibrium equation. The numerical results show the high accuracy of the proposed error estimator
    • …
    corecore