480 research outputs found
Single-Component Electroactive Polymer Architectures for Non-Enzymatic Glucose Sensing.
Organic mixed ionic-electronic conductors (OMIECs) have emerged as promising materials for biological sensing, owing to their electrochemical activity, stability in an aqueous environment, and biocompatibility. Yet, OMIEC-based sensors rely predominantly on the use of composite matrices to enable stimuli-responsive functionality, which can exhibit issues with intercomponent interfacing. In this study, an approach is presented for non-enzymatic glucose detection by harnessing a newly synthesized functionalized monomer, EDOT-PBA. This monomer integrates electrically conducting and receptor moieties within a single organic component, obviating the need for complex composite preparation. By engineering the conditions for electrodeposition, two distinct polymer film architectures are developed: pristine PEDOT-PBA and molecularly imprinted PEDOT-PBA. Both architectures demonstrated proficient glucose binding and signal transduction capabilities. Notably, the molecularly imprinted polymer (MIP) architecture demonstrated faster stabilization upon glucose uptake while it also enabled a lower limit of detection, lower standard deviation, and a broader linear range in the sensor output signal compared to its non-imprinted counterpart. This material design not only provides a robust and efficient platform for glucose detection but also offers a blueprint for developing selective sensors for a diverse array of target molecules, by tuning the receptor units correspondingly
Integrated proteomic and transcriptomic profiling of mouse lung development and Nmyc target genes
Although microarray analysis has provided information regarding the dynamics of gene expression during development of the mouse lung, no extensive correlations have been made to the levels of corresponding protein products. Here, we present a global survey of protein expression during mouse lung organogenesis from embryonic day E13.5 until adulthood using gel-free two-dimensional liquid chromatography coupled to shotgun tandem mass spectrometry (MudPIT). Mathematical modeling of the proteomic profiles with parallel DNA microarray data identified large groups of gene products with statistically significant correlation or divergence in coregulation of protein and transcript levels during lung development. We also present an integrative analysis of mRNA and protein expression in Nmyc loss- and gain-of-function mutants. This revealed a set of 90 positively and negatively regulated putative target genes. These targets are evidence that Nmyc is a regulator of genes involved in mRNA processing and a repressor of the imprinted gene Igf2r in the developing lung
High Salt Intake Down-Regulates Colonic Mineralocorticoid Receptors, Epithelial Sodium Channels and 11β-Hydroxysteroid Dehydrogenase Type 2
Besides the kidneys, the gastrointestinal tract is the principal organ responsible for sodium homeostasis. For sodium transport across the cell membranes the epithelial sodium channel (ENaC) is of pivotal relevance. The ENaC is mainly regulated by mineralocorticoid receptor mediated actions. The MR activation by endogenous 11β-hydroxy-glucocorticoids is modulated by the 11β-hydroxysteroid dehydrogenase type 2 (11β-HSD2). Here we present evidence for intestinal segment specific 11β-HSD2 expression and hypothesize that a high salt intake and/or uninephrectomy (UNX) affects colonic 11β-HSD2, MR and ENaC expression. The 11β-HSD2 activity was measured by means of 3H-corticosterone conversion into 3H-11-dehydrocorticosterone in Sprague Dawley rats on a normal and high salt diet. The activity increased steadily from the ileum to the distal colon by a factor of about 3, an observation in line with the relevance of the distal colon for sodium handling. High salt intake diminished mRNA and protein of 11β-HSD2 by about 50% (p<0.001) and reduced the expression of the MR (p<0.01). The functionally relevant ENaC-β and ENaC-γ expression, a measure of mineralocorticoid action, diminished by more than 50% by high salt intake (p<0.001). The observed changes were present in rats with and without UNX. Thus, colonic epithelial cells appear to contribute to the protective armamentarium of the mammalian body against salt overload, a mechanism not modulated by UNX
Finland
Peer reviewe
Digital Work Design
Erworben im Rahmen der Schweizer Nationallizenzen (http://www.nationallizenzen.ch)More and more academic studies and practitioner reports claim that human work is increasingly disrupted or even determined by information and communication technology (ICT) (Cascio and Montealegre 2016). This will make a considerable share of jobs currently performed by humans susceptible to automation (e.g., Frey and Osborne 2017; Manyika et al. 2017). These reports often sketch a picture of ‘machines taking over’ traditional domains like manufacturing, while ICT advances and capabilities seem to decide companies’ fate. Consequently, ICT is often put at the core of innovative efforts. While this applies to nearly all areas of workplace design, a recent popular example of increasing technology centricity is ‘Industry 4.0’, which is often delineated as ‘machines talking to computers’
Effectiveness of Chest Physiotherapy in Infants Hospitalized with Acute Bronchiolitis: A Multicenter, Randomized, Controlled Trial
Vincent Gajdos and colleagues report results of a randomized trial conducted among hospitalized infants with bronchiolitis. They show that a physiotherapy technique (increased exhalation and assisted cough) commonly used in France does not reduce time to recovery in this population
'OH MY GOD! BUY IT!' A multimodal discourse analysis of the discursive strategies used by Chinese ecommerce live-streamer Austin Li
Ecommerce livestreaming, also known as live commerce or social commerce, has taken off over the past two years in East Asia and is showing the tendency of going global. Intrigued by the phenomenal success of ecommerce livestream, we concentrate on analyzing the most prominent and illustrative ex- ample of Chinese ecommerce live-streamer Austin Li. Through this individual case study, we aim to investigate discursive strategies employed in ecommerce livestreaming and reveal resources specific to this new media genre. Guided by multimodal discourse analysis, our research first accommodates the socio-eco- nomic context of Li’s success to warrant social situatedness in interpreting data. After that we move into analyzing his discourse employed in livestreaming. Re- search findings suggest that in attention economy, Li strategically utilizes his male gender as a resource in trying on lipsticks for female customers. His dis- course in multiple modes serves to build consumer trust and propagate products. An in-depth analysis of his discursive strategies indicates that, ecommerce livestreaming as a new form of advertising not only shares commonalities with traditional advertisement discourse but also embodies affordances that are spe- cific to livestreaming platforms. To be more specific, livestreaming is featured with delimitation of time, real-time interactivity, and video-aided communica- tion. These affordances enable Li to adopt more interactive and personalized per- suasive discourse than conventional advertisement
Mechanism of cell death resulting from DNA interstrand cross-linking in mammalian cells
DNA interstrand cross-links (ICLs) are critical cytotoxic lesions produced by cancer chemotherapeutic agents such as the nitrogen mustards and platinum drugs; however, the exact mechanism of ICL-induced cell death is unclear. Here, we show a novel mechanism of p53-independent apoptotic cell death involving prolonged cell-cycle (G2) arrest, ICL repair involving HR, transient mitosis, incomplete cytokinesis, and gross chromosomal abnormalities resulting from ICLs in mammalian cells. This characteristic ‘giant' cell death, observed by using time-lapse video microscopy, was reduced in ICL repair ERCC1- and XRCC3-deficient cells. Collectively, the results illustrate the coordination of ICL-induced cellular responses, including cell-cycle arrest, DNA damage repair, and cell death
Removal of Heterologous Sequences from Plasmodium falciparum Mutants Using FLPe-Recombinase
Genetically-modified mutants are now indispensable Plasmodium gene-function reagents, which are also being pursued as genetically attenuated parasite vaccines. Currently, the generation of transgenic malaria-parasites requires the use of drug-resistance markers. Here we present the development of an FRT/FLP-recombinase system that enables the generation of transgenic parasites free of resistance genes. We demonstrate in the human malaria parasite, P. falciparum, the complete and efficient removal of the introduced resistance gene. We targeted two neighbouring genes, p52 and p36, using a construct that has a selectable marker cassette flanked by FRT-sequences. This permitted the subsequent removal of the selectable marker cassette by transient transfection of a plasmid that expressed a 37°C thermostable and enhanced FLP-recombinase. This method of removing heterologous DNA sequences from the genome opens up new possibilities in Plasmodium research to sequentially target multiple genes and for using genetically-modified parasites as live, attenuated malaria vaccines
ELSA in industrial robotics
Purpose of ReviewIndustry is changing; converging technologies allow a fourth Industrial Revolution, where it is envisaged that robots will work alongside humans. We investigate how the research community is responding to the ethical, legal, and social aspects of industrial robots, with a primary focus on manufacturing industry.Recent FindingsThe literature shows considerable interest in the impact of robotics and automation on industry. This interest spans many disciplines, which is to be expected given that the ELS impacts of industrial robotics may be profound in their depth and far-reaching in their scope.SummaryWe suggest that the increasing importance of human-robot interaction (HRI) reduces the differentiation between industrial robotics and other robotic domains and that the main challenges to successful adoption for the benefit of human life are above all political and economic. Emerging standards and legal frameworks may scaffold this success, but it is apparent that getting it wrong might have repercussions that last for generations
- …