108 research outputs found

    Early age exposure to moisture and mould is related to FeNO at the age of 6 years

    Get PDF
    Background Exposure to indoor moisture damage and visible mold has been found to be associated with asthma and respiratory symptoms in several questionnaire-based studies by self-report. We aimed to define the prospective association between the early life exposure to residential moisture damage or mold and fractional exhaled nitric oxide (FeNO) and lung function parameters as objective markers for airway inflammation and asthma in 6-year-old children. Methods Home inspections were performed in children's homes when infants were on average 5 months old. At age 6 years, data on FeNO (n = 322) as well as lung function (n = 216) measurements were collected. Logistic regression and generalized additive models were used for statistical analyses. Results Early age major moisture damage and moisture damage or mold in the child's main living areas were significantly associated with increased FeNO levels (>75th percentile) at the age of 6 years (adjusted odds ratios, 95% confidence intervals, aOR (95% CI): 3.10 (1.35-7.07) and 3.16 (1.43-6.98), respectively. Effects were more pronounced in those who did not change residential address throughout the study period. For lung function, major structural damage within the whole home was associated with reduced FEV1 and FVC, but not with FEV1/FVC. No association with lung function was observed with early moisture damage or mold in the child's main living areas. Conclusion These results underline the importance of prevention and remediation efforts of moisture and mold-damaged buildings in order to avoid harmful effects within the vulnerable phase of the infants and children's immunologic development.Peer reviewe

    Latent class analysis reveals clinically relevant atopy phenotypes in 2 birth cohorts

    Get PDF
    Background: Phenotypes of childhood-onset asthma are characterized by distinct trajectories and functional features. For atopy, definition of phenotypes during childhood is less clear. Objective: We sought to define phenotypes of atopic sensitization over the first 6 years of life using a latent class analysis (LCA) integrating 3 dimensions of atopy: allergen specificity, time course, and levels of specific IgE (sIgE). Methods: Phenotypes were defined by means of LCA in 680 children of the Multizentrische Allergiestudie (MAS) and 766 children of the Protection against allergy: Study in Rural Environments (PASTURE) birth cohorts and compared with classical nondisjunctive definitions of seasonal, perennial, and food sensitization with respect to atopic diseases and lung function. Cytokine levels were measured in the PASTURE cohort. Results: The LCA classified predominantly by type and multiplicity of sensitization (food vs inhalant), allergen combinations, and sIgE levels. Latent classes were related to atopic disease manifestations with higher sensitivity and specificity than the classical definitions. LCA detected consistently in both cohorts a distinct group of children with severe atopy characterized by high seasonal sIgE levels and a strong propensity for asthma; hay fever; eczema; and impaired lung function, also in children without an established asthma diagnosis. Severe atopy was associated with an increased IL-5/IFN-gamma ratio. A path analysis among sensitized children revealed that among all features of severe atopy, only excessive sIgE production early in life affected asthma risk. Conclusions: LCA revealed a set of benign, symptomatic, and severe atopy phenotypes. The severe phenotype emerged as a latent condition with signs of a dysbalanced immune response. It determined high asthma risk through excessive sIgE production and directly affected impaired lung function.Peer reviewe

    Development of Core Outcome Measures sets for paediatric and adult Severe Asthma (COMSA)

    Get PDF
    BACKGROUND: Effectiveness studies with biological therapies for asthma lack standardised outcome measures. The COMSA (Core Outcome Measures sets for paediatric and adult Severe Asthma) working group sought to develop Core Outcome Measures (COM) sets to facilitate better synthesis of data and appraisal of biologics in paediatric and adult asthma clinical studies.METHODS: COMSA utilised a multi-stakeholder consensus process among patients with severe asthma, adult, and paediatric clinicians, pharmaceutical representatives and health regulators from across Europe. Evidence included a systematic review of development, validity, and reliability of selected outcome measures plus a narrative review and a pan-European survey to better understand patients' and carers' views about outcome measures. It was discussed using a modified GRADE Evidence to Decision framework. Anonymous voting was conducted using predefined consensus criteria.RESULTS: Both adult and paediatric COM sets include forced expiratory volume in 1 s (FEV1) as z scores, annual frequency of severe exacerbations and maintenance oral corticosteroid use. Additionally, the paediatric COM set includes the Paediatric Asthma Quality of Life Questionnaire, and Asthma Control Test (ACT) or Childhood-ACT while the adult COM includes the Severe Asthma Questionnaire and the Asthma Control Questionnaire-6 (symptoms and rescue medication use reported separately).CONCLUSIONS: This patient-centred collaboration has produced two COM sets for paediatric and adult severe asthma. It is expected that they will inform the methodology of future clinical trials, enhance comparability of efficacy and effectiveness of biological therapies, and help assess their socioeconomic value. COMSA will inform definitions of non-response and response to biological therapy for severe asthma.</p

    Can Measurements of Inflammatory Biomarkers be Used to Spot Respiratory Viral Infections?

    Get PDF
    Accurate detection of human respiratory viral infections is highly topical. We investigated how strongly inflammatory biomarkers (FeNO, eosinophils, neutrophils, and cytokines in nasal lavage fluid) and lung function parameters change upon rhinovirus 16 infection, in order to explore their potential use for infection detection. To this end, within a longitudinal cohort study, healthy and mildly asthmatic volunteers were experimentally inoculated with rhinovirus 16, and time series of these parameters/biomarkers were systematically recorded and compared between the pre- and post-infection phases of the study, which lasted two months and one month, respectively. We found that the parameters'/biomarkers' ability to discriminate between the infected and the uninfected state varied over the observation time period. Consistently over time, the concentration of cytokines, in nasal lavage fluid, showed moderate to very good discrimination performance, thereby qualifying for disease progression monitoring, whereas lung function and FeNO, while quickly and non-invasively measurable using cheap portable devices (e.g., at airports), performed poorly

    Loss of adaptive capacity in asthmatic patients revealed by biomarker fluctuation dynamics after rhinovirus challenge

    Get PDF
    Asthma is a dynamic disease, in which lung mechanical and inflammatory processes interact in a complex manner, often resulting in exaggerated physiological, in particular, inflammatory responses to exogenous triggers. We hypothesize that this may be explained by respiratory disease-related systems instability and loss of adaptability to changing environmental conditions, manifested in highly fluctuating biomarkers and symptoms. Using time series of inflammatory (eosinophils, neutrophils, FeNO), clinical and lung function biomarkers (PEF, FVC,FEV; 1; ), we estimated this loss of adaptive capacity (AC) during an experimental rhinovirus infection in 24 healthy and asthmatic human volunteers. Loss of AC was estimated by comparing similarities between pre- and post-challenge time series. Unlike healthy participants, the asthmatic's post-viral-challenge state resembled more other rhinovirus-infected asthmatics than their own pre-viral-challenge state (hypergeometric-test: p=0.029). This reveals loss of AC and supports the concept that in asthma, biological processes underlying inflammatory and physiological responses are unstable, contributing to loss of control

    A prospective study of the impact of air pollution on respiratory symptoms and infections in infants

    No full text
    Rationale: There is increasing evidence that short-term exposure to air pollution has a detrimental effect on respiratory health, but data from healthy populations, particularly infants, are scarce. Objectives: To assess the association of air pollution with frequency and severity of respiratory symptoms and infections measured weekly in healthy infants. Methods: In a prospective birth cohort of 366 infants of unselected mothers, respiratory health was assessed weekly by telephone interviews during the first year of life (19,106 total observations). Daily mean levels of particulate matter (PM10), nitrogen dioxide (NO2), and ozone (O3) were obtained from local monitoring stations. We determined the association of the preceding week's pollutant levels with symptom scores and respiratory tract infections using a generalized additive mixed model with an autoregressive component. In addition, we assessed whether neonatal lung function influences this association and whether duration of infectious episodes differed between weeks with normal PM10 and weeks with elevated levels. Measurements and Main Results: We found a significant association between air pollution and respiratory symptoms, particularly in the week after respiratory tract infections (risk ratio, 1.13 [1.02-1.24] per 10 μg/m(3) PM10 levels) and in infants with premorbid lung function. During times of elevated PM10 (>33.3 μg/m(3)), duration of respiratory tract infections increased by 20% (95% confidence interval, 2-42%). Conclusions: Exposure to even moderate levels of air pollution was associated with increased respiratory symptoms in healthy infants. Particularly in infants with premorbid lung function and inflammation, air pollution contributed to longer duration of infectious episodes with a potentially large socioeconomic impact

    Dynamics of the nasal microbiota in infancy: A prospective cohort study.

    Get PDF
    BACKGROUND Understanding the composition and dynamics of the upper respiratory tract microbiota in healthy infants is a prerequisite to investigate the role of the microbiota in patients with respiratory diseases. This is especially true in early life, when the immune system is in development. OBJECTIVE We sought to describe the dynamics of the upper respiratory tract microbiota in healthy infants within the first year of life. METHODS After exclusion of low-quality samples, microbiota characterization was performed by using 16S rDNA pyrosequencing of 872 nasal swabs collected biweekly from 47 unselected infants. RESULTS Bacterial density increased and diversity decreased within the first year of life (R(2) = 0.95 and 0.73, respectively). A distinct profile for the first 3 months of life was found with increased relative abundances of Staphlyococcaceae and Corynebacteriaceae (exponential decay: R(2) = 0.94 and 0.96, respectively). In addition, relative bacterial abundance and composition differed significantly from summer to winter months. The individual composition of the microbiota changed with increasing time intervals between samples and was best modeled by an exponential function (R(2) = 0.97). Within-subject dissimilarity in a 2-week time interval was consistently lower than that between subjects, indicating a personalized microbiota. CONCLUSION This study reveals age and seasonality as major factors driving the composition of the nasal microbiota within the first year of life. A subject's microbiota is personalized but dynamic throughout the first year. These data are indispensable to interpretation of cross-sectional studies and investigation of the role of the microbiota in both healthy subjects and patients with respiratory diseases. They might also serve as a baseline for future intervention studies
    corecore