1,736 research outputs found

    Regulation of recombination at yeast nuclear pores controls repair and triplet repeat stability.

    Get PDF
    Secondary structure-forming DNA sequences such as CAG repeats interfere with replication and repair, provoking fork stalling, chromosome fragility, and recombination. In budding yeast, we found that expanded CAG repeats are more likely than unexpanded repeats to localize to the nuclear periphery. This positioning is transient, occurs in late S phase, requires replication, and is associated with decreased subnuclear mobility of the locus. In contrast to persistent double-stranded breaks, expanded CAG repeats at the nuclear envelope associate with pores but not with the inner nuclear membrane protein Mps3. Relocation requires Nup84 and the Slx5/8 SUMO-dependent ubiquitin ligase but not Rad51, Mec1, or Tel1. Importantly, the presence of the Nup84 pore subcomplex and Slx5/8 suppresses CAG repeat fragility and instability. Repeat instability in nup84, slx5, or slx8 mutant cells arises through aberrant homologous recombination and is distinct from instability arising from the loss of ligase 4-dependent end-joining. Genetic and physical analysis of Rad52 sumoylation and binding at the CAG tract suggests that Slx5/8 targets sumoylated Rad52 for degradation at the pore to facilitate recovery from acute replication stress by promoting replication fork restart. We thereby confirmed that the relocation of damage to nuclear pores plays an important role in a naturally occurring repair process

    Galaxies behind the Galactic plane: First results and perspectives from the VVV Survey

    Full text link
    Vista Variables in The Via Lactea (VVV) is an ESO variability survey that is performing observations in near infrared bands (ZYJHKs) towards the Galactic bulge and part of the disk with the completeness limits at least 3 mag deeper than 2MASS. In the present work, we searched in the VVV survey data for background galaxies near the Galactic plane using ZYJHKs photometry that covers 1.636 square degrees. We identified 204 new galaxy candidates by analyzing colors, sizes, and visual inspection of multi-band (ZYJHKs) images. The galaxy candidates colors were also compared with the predicted ones by star counts models considering a more realistic extinction model at the same completeness limits observed by VVV. A comparison of the galaxy candidates with the expected one by Milennium simulations is also presented. Our results increase the number density of known galaxies behind the Milky Way by more than one order of magnitude. A catalog with galaxy properties including ellipticity, Petrosian radii and ZYJHKs magnitudes is provided, as well as comparisons of the results with other surveys of galaxies towards Galactic plane.Comment: 27 pages, 10 figures, 2 tables; in press at The Astronomical Journa

    Microlensing Maps for the Milky Way Galaxy

    Full text link
    At any instant, there are roughly 1000 ongoing microlensing events to sources brighter than 20th magnitude in the Milky Way Galaxy. Large-scale maps of the microlensing optical depth and the mean timescale are constructed for a number of models of the Galactic bar and disk, incorporating the effects of streaming and spiral structure. Freudenreich's model can reproduce the high optical depths towards the Bulge. It is also in good agreement with the data towards the spiral arms (except for the gamma Norma field). Spiral structure tends to increase the optical depth by about 20% and the mean timescale by about 100%. Different bar morphologies give characteristically different shaped contours, especially at low Galactic latitudes (|b| < 2 degrees). These could be traced out with a K band microlensing survey, consuming about 100 minutes per night on a telescope like VISTA.Comment: 15 pages, 5 figures, ApJ (Letters) in pres

    Diffuse inverse Compton and synchrotron emission from dark matter annihilations in galactic satellites

    Full text link
    Annihilating dark matter particles produce roughly as much power in electrons and positrons as in gamma ray photons. The charged particles lose essentially all of their energy to inverse Compton and synchrotron processes in the galactic environment. We discuss the diffuse signature of dark matter annihilations in satellites of the Milky Way (which may be optically dark with few or no stars), providing a tail of emission trailing the satellite in its orbit. Inverse Compton processes provide X-rays and gamma rays, and synchrotron emission at radio wavelengths might be seen. We discuss the possibility of detecting these signals with current and future observations, in particular EGRET and GLAST for the gamma rays.Comment: 13 pages, 5 figure

    Microlensing as a probe of the Galactic structure; 20 years of microlensing optical depth studies

    Full text link
    Microlensing is now a very popular observational astronomical technique. The investigations accessible through this effect range from the dark matter problem to the search for extra-solar planets. In this review, the techniques to search for microlensing effects and to determine optical depths through the monitoring of large samples of stars will be described. The consequences of the published results on the knowledge of the Milky-Way structure and its dark matter component will be discussed. The difficulties and limitations of the ongoing programs and the perspectives of the microlensing optical depth technique as a probe of the Galaxy structure will also be detailed.Comment: Accepted for publication in General Relativity and Gravitation. General Relativity and Gravitation in press (2010) 0

    Study of Spin and Decay-Plane Correlations of W Bosons in the e+e- -> W+W- Process at LEP

    Get PDF
    Data collected at LEP at centre-of-mass energies \sqrt(s) = 189 - 209 GeV are used to study correlations of the spin of W bosons using e+e- -> W+W- -> lnqq~ events. Spin correlations are favoured by data, and found to agree with the Standard Model predictions. In addition, correlations between the W-boson decay planes are studied in e+e- -> W+W- -> lnqq~ and e+e- -> W+W- -> qq~qq~ events. Decay-plane correlations, consistent with zero and with the Standard Model predictions, are measured

    The intrinsic shape of galaxy bulges

    Full text link
    The knowledge of the intrinsic three-dimensional (3D) structure of galaxy components provides crucial information about the physical processes driving their formation and evolution. In this paper I discuss the main developments and results in the quest to better understand the 3D shape of galaxy bulges. I start by establishing the basic geometrical description of the problem. Our understanding of the intrinsic shape of elliptical galaxies and galaxy discs is then presented in a historical context, in order to place the role that the 3D structure of bulges play in the broader picture of galaxy evolution. Our current view on the 3D shape of the Milky Way bulge and future prospects in the field are also depicted.Comment: Invited Review to appear in "Galactic Bulges" Editors: Laurikainen E., Peletier R., Gadotti D. Springer Publishing. 24 pages, 7 figure

    Ultrarelativistic sources in nonlinear electrodynamics

    Get PDF
    The fields of rapidly moving sources are studied within nonlinear electrodynamics by boosting the fields of sources at rest. As a consequence of the ultrarelativistic limit the delta-like electromagnetic shock waves are found. The character of the field within the shock depends on the theory of nonlinear electrodynamics considered. In particular, we obtain the field of an ultrarelativistic charge in the Born-Infeld theory.Comment: 10 pages, 3 figure

    Measurement of the Cross Section for Open-Beauty Production in Photon-Photon Collisions at LEP

    Get PDF
    The cross section for open-beauty production in photon-photon collisions is measured using the whole high-energy and high-luminosity data sample collected by the L3 detector at LEP. This corresponds to 627/pb of integrated luminosity for electron-positron centre-of-mass energies from 189GeV to 209GeV. Events containing b quarks are identified through their semi-leptonic decay into electrons or muons. The e+e- -> e+e-b b~X cross section is measured within our fiducial volume and then extrapolated to the full phase space. These results are found to be in significant excess with respect to Monte Carlo predictions and next-to-leading order QCD calculations

    Radiation hardness qualification of PbWO4 scintillation crystals for the CMS Electromagnetic Calorimeter

    Get PDF
    This is the Pre-print version of the Article. The official published version can be accessed from the link below - Copyright @ 2010 IOPEnsuring the radiation hardness of PbWO4 crystals was one of the main priorities during the construction of the electromagnetic calorimeter of the CMS experiment at CERN. The production on an industrial scale of radiation hard crystals and their certification over a period of several years represented a difficult challenge both for CMS and for the crystal suppliers. The present article reviews the related scientific and technological problems encountered
    corecore