1,502 research outputs found

    Experimental demonstration of higher-order Laguerre-Gauss mode interferometry

    Get PDF
    The compatibility of higher-order Laguerre-Gauss (LG) modes with interferometric technologies commonly used in gravitational wave detectors is investigated. In this paper we present the first experimental results concerning the performance of the LG33 mode in optical resonators. We show that the Pound-Drever-Hall error signal for a LG33 mode in a linear optical resonator is identical to that of the more commonly used LG00 mode, and demonstrate the feedback control of the resonator with a LG33 mode. We succeeded to increase the mode purity of a LG33 mode generated using a spatial-light modulator from 51% to 99% upon transmission through a linear optical resonator. We further report the experimental verification that a triangular optical resonator does not transmit helical LG modes

    Quantum-Noise Power Spectrum of Fields with Discrete Classical Components

    Get PDF
    We present an algorithmic approach to calculate the quantum-noise spectral density of photocurrents generated by optical fields with arbitrary discrete classical spectrum in coherent or squeezed states. The measurement scheme may include an arbitrary number of demodulations of the photocurrent. Thereby, our method is applicable to the general heterodyne detection scheme which is implemented in many experiments. For some of these experiments, e.g. in laser-interferometric gravitational-wave detectors, a reliable prediction of the quantum noise of fields in coherent and squeezed states plays a decisive role in the design phase and detector characterization. Still, our investigation is limited in two ways. First, we only consider coherent and squeezed states of the field and second, we demand that the photocurrent depends linearly on the field's vacuum amplitudes which means that at least one of the classical components is comparatively strong.Comment: 8 pages, 2 figure

    Prospects of higher-order Laguerre Gauss modes in future gravitational wave detectors

    Full text link
    The application of higher-order Laguerre Gauss (LG) modes in large-scale gravitational wave detectors has recently been proposed. In comparison to the fundamental mode, some higher-order Laguerre Gauss modes can significantly reduce the contribution of coating Brownian noise. Using frequency domain simulations we give a detailed analysis of the longitudinal and angular control signals derived with a LG33 mode in comparison to the fundamental TEM00 mode. The performance regarding interferometric sensing and control of the LG33 mode is found to be similar, if not even better in all aspects of interest. In addition, we evaluate the sensitivity gain of the implementation of LG33 modes into the Advanced Virgo instrument. Our analysis shows that the application of the LG33 mode results in a broadband improvement of the Advanced Virgo sensitivity, increasing the potential detection rate of binary neutron star inspirals by a factor 2.1.Comment: 12 pages, 8 figure

    Higher order Laguerre-Gauss mode degeneracy in realistic, high finesse cavities

    Get PDF
    Higher order Laguerre-Gauss (LG) beams have been proposed for use in future gravitational wave detectors, such as upgrades to the Advanced LIGO detectors and the Einstein Telescope, for their potential to reduce the effects of the thermal noise of the test masses. This paper details the theoretical analysis and simulation work carried out to investigate the behaviour of LG beams in realistic optical setups, in particular the coupling between different LG modes in a linear cavity. We present a new analytical approximation to compute the coupling between modes, using Zernike polynomials to describe mirror surface distortions. We apply this method in a study of the behaviour of the LG33 mode within realistic arm cavities, using measured mirror surface maps from the Advanced LIGO project. We show mode distortions that can be expected to arise due to the degeneracy of higher order spatial modes within such cavities and relate this to the theoretical analysis. Finally we identify the mirror distortions which cause significant coupling from the LG33 mode into other order 9 modes and derive requirements for the mirror surfaces.Comment: 12 pages Submitted to PRD 19/07/201

    Increased sensitivity of higher-order laser beams to mode mismatches

    Get PDF
    This Letter derives explicit factors linking mode-mismatch-induced power losses in Hermite–Gauss optical modes to the losses of the fundamental spatial mode. Higher-order modes are found to be more sensitive to beam parameter mismatches. This is particularly relevant for gravitational-wave detectors, where lasers employing higher-order optical modes have been proposed to mitigate thermal noise, and quantum-enhanced detectors are very susceptible to losses. This work should inform mode matching and squeezing requirements for Advanced+ and third generation detectors

    Frequency domain interferometer simulation with higher-order spatial modes

    Full text link
    FINESSE is a software simulation that allows to compute the optical properties of laser interferometers as they are used by the interferometric gravitational-wave detectors today. It provides a fast and versatile tool which has proven to be very useful during the design and the commissioning of gravitational-wave detectors. The basic algorithm of FINESSE numerically computes the light amplitudes inside an interferometer using Hermite-Gauss modes in the frequency domain. In addition, FINESSE provides a number of commands to easily generate and plot the most common signals like, for example, power enhancement, error or control signals, transfer functions and shot-noise-limited sensitivities. Among the various simulation tools available to the gravitational wave community today, FINESSE is the most advanced general optical simulation that uses the frequency domain. It has been designed to allow general analysis of user defined optical setups while being easy to install and easy to use.Comment: Added an example for the application of the simulation during the commisioning of the GEO 600 gravitational-wave detecto

    Eigenmode in a misaligned triangular optical cavity

    Full text link
    We derive relationships between various types of small misalignments on a triangular Fabry-Perot cavity and associated geometrical eigenmode changes. We focus on the changes of beam spot positions on cavity mirrors, the beam waist position, and its angle. A comparison of analytical and numerical results shows excellent agreement. The results are applicable to any triangular cavity close to an isosceles triangle, with the lengths of two sides much bigger than the other, consisting of a curved mirror and two flat mirrors yielding a waist equally separated from the two flat mirrors. This cavity shape is most commonly used in laser interferometry. The analysis presented here can easily be extended to more generic cavity shapes. The geometrical analysis not only serves as a method of checking a simulation result, but also gives an intuitive and handy tool to visualize the eigenmode of a misaligned triangular cavity.Comment: 17 pages, 21 figure

    The Influence of Dual-Recycling on Parametric Instabilities at Advanced LIGO

    Get PDF
    Laser interferometers with high circulating power and suspended optics, such as the LIGO gravitational wave detectors, experience an optomechanical coupling effect known as a parametric instability: the runaway excitation of a mechanical resonance in a mirror driven by the optical field. This can saturate the interferometer sensing and control systems and limit the observation time of the detector. Current mitigation techniques at the LIGO sites are successfully suppressing all observed parametric instabilities, and focus on the behaviour of the instabilities in the Fabry-Perot arm cavities of the interferometer, where the instabilities are first generated. In this paper we model the full dual-recycled Advanced LIGO design with inherent imperfections. We find that the addition of the power- and signal-recycling cavities shapes the interferometer response to mechanical modes, resulting in up to four times as many peaks. Changes to the accumulated phase or Gouy phase in the signal-recycling cavity have a significant impact on the parametric gain, and therefore which modes require suppression.Comment: 9 pages, 11 figures, 2 ancillary file
    corecore