3 research outputs found
Cardiovascular abnormalities in patients with oral cleft: a clinical-electrocardiographic-echocardiographic study
OBJECTIVES: The present study aims to describe the clinical, electrocardiographic, and echocardiographic cardiological findings in a group of patients with oral clefts. METHODS: This is a prospective cross-sectional study on 70 children (age range from 13 days to 19 years) with oral clefts who attended the multidisciplinary program of a university hospital from March 2013 to September 2014. The patients were evaluated by a pediatric cardiologist and underwent detailed anamnesis, physical examination, electrocardiogram, and echocardiogram. RESULTS: Sixty percent of the patients were male; 55.7% presented with cleft lip and palate, and 40.0% presented with health complaints. Comorbidities were found in 44.3%. Relevant pregnancy, neonatal, family and personal antecedents were present in 55.7%, 27.1%, 67.2%, and 24.3% of the patients, respectively. Regarding the antecedents, 15.2% of the patients presented with a cardiac murmur, 49.0% with a familial risk of developing plurimetabolic syndrome, and 6% with family antecedents of rheumatic fever. Electrocardiographic evaluation showed one case of atrioventricular block. Echocardiograms were abnormal in 35.7% of the exams, including 5 cases of mitral valve prolapse — one of which was diagnosed with rheumatic heart disease. CONCLUSION: The finding of a family risk of developing plurimetabolic syndrome and a diagnosis of rheumatic heart disease indicates that patients with oral clefts may be more prone to developing acquired heart disease. Thus, our findings highlight the importance of anamnesis and methodological triangulation (clinical-electrocardiographic-echocardiographic) in the investigation of patients with oral clefts and emphasize that cardiological follow-up to evaluate acquired and/or rhythm heart diseases is necessary. This strategy permits comorbidity prevention and individualized planned treatment
Brazilian Flora 2020: Leveraging the power of a collaborative scientific network
International audienceThe shortage of reliable primary taxonomic data limits the description of biological taxa and the understanding of biodiversity patterns and processes, complicating biogeographical, ecological, and evolutionary studies. This deficit creates a significant taxonomic impediment to biodiversity research and conservation planning. The taxonomic impediment and the biodiversity crisis are widely recognized, highlighting the urgent need for reliable taxonomic data. Over the past decade, numerous countries worldwide have devoted considerable effort to Target 1 of the Global Strategy for Plant Conservation (GSPC), which called for the preparation of a working list of all known plant species by 2010 and an online world Flora by 2020. Brazil is a megadiverse country, home to more of the world's known plant species than any other country. Despite that, Flora Brasiliensis, concluded in 1906, was the last comprehensive treatment of the Brazilian flora. The lack of accurate estimates of the number of species of algae, fungi, and plants occurring in Brazil contributes to the prevailing taxonomic impediment and delays progress towards the GSPC targets. Over the past 12 years, a legion of taxonomists motivated to meet Target 1 of the GSPC, worked together to gather and integrate knowledge on the algal, plant, and fungal diversity of Brazil. Overall, a team of about 980 taxonomists joined efforts in a highly collaborative project that used cybertaxonomy to prepare an updated Flora of Brazil, showing the power of scientific collaboration to reach ambitious goals. This paper presents an overview of the Brazilian Flora 2020 and provides taxonomic and spatial updates on the algae, fungi, and plants found in one of the world's most biodiverse countries. We further identify collection gaps and summarize future goals that extend beyond 2020. Our results show that Brazil is home to 46,975 native species of algae, fungi, and plants, of which 19,669 are endemic to the country. The data compiled to date suggests that the Atlantic Rainforest might be the most diverse Brazilian domain for all plant groups except gymnosperms, which are most diverse in the Amazon. However, scientific knowledge of Brazilian diversity is still unequally distributed, with the Atlantic Rainforest and the Cerrado being the most intensively sampled and studied biomes in the country. In times of “scientific reductionism”, with botanical and mycological sciences suffering pervasive depreciation in recent decades, the first online Flora of Brazil 2020 significantly enhanced the quality and quantity of taxonomic data available for algae, fungi, and plants from Brazil. This project also made all the information freely available online, providing a firm foundation for future research and for the management, conservation, and sustainable use of the Brazilian funga and flora