34 research outputs found
Solution to the problem of tomographic scanning of objects by small area X-Ray detectors
Standard X-Ray tomographic setups basically consist of 3 parts: radiation source, mechanics for mounting a sample and detector system. Each part of tomographic setup in one way or another contributes into the quality of reconstructed images. Detector system is responsible for data acquisition process. Development of detectors improves them in terms of resolution, acquisition speed, dark current etc. Such improvements increases costs for producing of detectors as well as their final price. Tomographic scanning of long objects requires using detectors of corresponding size. It makes tomographic setups expensive, because the price of detectors also increases with increasing of their size. Presented work proposes to solve this problem by shifting detector along the longest dimension of the sample and applying optimized filtered backprojection algorithm
Property Optimization for TWIP Steels – Effect of Pre-deformation Temperature on Fatigue Properties
The current work investigates the impact of pre-deformation temperatures on the microstructure evolution and the subsequent cyclic stress-strain response of high-manganese steel showing twinning-induced plasticity (TWIP) at room temperature (RT). Deformation at low temperatures increases the hardening rate at low to medium degrees of deformation through concurrent martensitic transformation. In contrast, high temperatures promote dislocation slip. Thus, employing pre-treatments at temperatures below and above RT leads to the evolution of considerably different microstructures. Low-cycle fatigue experiments revealed distinct differences for the pre-treated TWIP steels
Indentation Plastometry of Particulate Metal Matrix Composites, Highlighting Effects of Microstructural Scale
Herein, it is concerned with the use of profilometry-based indentation plastometry (PIP) to obtain mechanical property information for particulate metal matrix composites (MMCs). This type of test, together with conventional uniaxial testing, has been applied to four different MMCs (produced with various particulate contents and processing conditions). It is shown that reliable stress–strain curves can be obtained using PIP, although the possibility of premature (prenecking) fracture should be noted. Close attention is paid to scale effects. As a consequence of variations in local spatial distributions of particulate, the “representative volume” of these materials can be relatively large. This can lead to a certain amount of scatter in PIP profiles and it is advisable to carry out a number of repeat PIP tests in order to obtain macroscopic properties. Nevertheless, it is shown that PIP testing can reliably detect the relatively minor (macroscopic) anisotropy exhibited by forged materials of this type