3,886 research outputs found

    Technical Note: The CREDIBLE Uncertainty Estimation (CURE) toolbox: facilitating the communication of epistemic uncertainty

    Get PDF
    There is a general trend for increasing inclusion of uncertainty estimation in the environmental modelling domain. We present the CREDIBLE Uncertainty Estimation (CURE) Toolbox, an open source MATLABTM toolbox for uncertainty estimation aimed at scientists and practitioners that are not necessarily experts in uncertainty estimation. The toolbox focusses on environmental simulation models and hence employs a range of different Monte Carlo methods for forward and conditioned uncertainty estimation. The methods included span both formal statistical and informal approaches, which are demonstrated using a range of modelling applications set up as workflow scripts. The workflow scripts provide examples of how to utilise toolbox functions for a variety of modelling applications and hence aid the user in defining their own workflow: additional help is provided by extensively commented code. The toolbox implementation aims to increase the uptake of uncertainty estimation methods within a framework designed to be open and explicit, in a way that tries to represent best practice in applying the methods included. Best practice in the evaluation of modelling assumptions and choices, specifically including epistemic uncertainties, is also included by the incorporation of a condition tree that allows users to record assumptions and choices made as an audit trail log.</p

    Ab initio calculation of the Hoyle state and a new look at clustering in nuclei

    Full text link
    I present an ab initio calculation of the spectrum of carbon-12, including also the famous Hoyle state. Its structure is discussed and a new interpretation of clustering in nuclear physics is given.Comment: Plenary talk, The Rutherford Centennial Conference on Nuclear Physics, Manchester, August 8-12, 201

    Triaxial deformation in 10Be

    Get PDF
    The triaxial deformation in 10^{10}Be is investigated using a microscopic α+α+n+n\alpha+\alpha+n+n model. The states of two valence neutrons are classified based on the molecular-orbit (MO) model, and the π\pi-orbit is introduced about the axis connecting the two α\alpha-clusters for the description of the rotational bands. There appear two rotational bands comprised mainly of Kπ=0+K^\pi = 0^+ and Kπ=2+K^\pi = 2^+, respectively, at low excitation energy, where the two valence neutrons occupy Kπ=3/2−K^\pi = 3/2^- or Kπ=1/2−K^\pi = 1/2^- orbits. The triaxiality and the KK-mixing are discussed in connection to the molecular structure, particularly, to the spin-orbit splitting. The extent of the triaxial deformation is evaluated in terms of the electro-magnetic transition matrix elements (Davydov-Filippov model, Q-invariant model), and density distribution in the intrinsic frame. The obtained values turned out to be Îł=15o∌20o\gamma = 15^o \sim 20^o.Comment: 15 pages, latex, 3 figure

    Helium Clustering in Neutron-Rich Be Isotopes

    Get PDF
    Measurements of the helium-cluster breakup and neutron removal cross sections for neutron-rich Be isotopes A=10-12,14 are presented. These have been studied in the 30 to 42 MeV/u energy range where reaction measurements are proposed to be sensitive to the cluster content of the ground-state wave-function. These measurements provide a comprehensive survey of the decay processes of the Be isotopes by which the valence neutrons are removed revealing the underlying alpha-alpha core-cluster structure. The measurements indicate that clustering in the Be isotopes remains important up to the drip-line nucleus 14^Be and that the dominant helium-cluster structure in the neutron-rich Be isotopes corresponds to alpha-Xn-alpha.Comment: 5 pages, 2 tables and 3 figure

    Structure of excited states of Be-11 studied with Antisymmetrized Molecular Dynamics

    Get PDF
    The structures of the ground and excited states of Be-11 were studied with a microscopic method of antisymmetrized molecular dynamics. The theoretical results reproduce the abnormal parity of the ground state and predict various kinds of excited states. We suggest a new negative-parity band with a well-developed clustering structure which reaches high-spin states. Focusing on a 2α2\alpha clustering structure, we investigated structure of the ground and excited states. We point out that molecular orbits play important roles for the intruder ground state and the low-lying 2ℏω2\hbar \omega states. The features of the breaking of α\alpha clusters were also studied with the help of data for Gamow-Teller transitions.Comment: 24 pages, 7 figures, to be submitted to Phys.Rev.

    Broadband characterisation of interior materials and surface scattering using terahertz time-domain spectroscopy

    Get PDF
    Indoor wireless communications need to move towards Terahertz (THz) frequencies in order to keep up with society's demand for data transmission, but this change is currently hindered by limited knowledge of material properties and propagation and scattering models at these frequencies. The dielectric properties of common household materials are investigated here with a twofold objective: (1) to extend the library of material properties at THz, and (2) to estimate and disentangle losses in scattering measurements in order to facilitate propagation, scattering and, ultimately, channel models
    • 

    corecore