4,879 research outputs found
Visual Dynamics: Stochastic Future Generation via Layered Cross Convolutional Networks
We study the problem of synthesizing a number of likely future frames from a
single input image. In contrast to traditional methods that have tackled this
problem in a deterministic or non-parametric way, we propose to model future
frames in a probabilistic manner. Our probabilistic model makes it possible for
us to sample and synthesize many possible future frames from a single input
image. To synthesize realistic movement of objects, we propose a novel network
structure, namely a Cross Convolutional Network; this network encodes image and
motion information as feature maps and convolutional kernels, respectively. In
experiments, our model performs well on synthetic data, such as 2D shapes and
animated game sprites, and on real-world video frames. We present analyses of
the learned network representations, showing it is implicitly learning a
compact encoding of object appearance and motion. We also demonstrate a few of
its applications, including visual analogy-making and video extrapolation.Comment: Journal preprint of arXiv:1607.02586 (IEEE TPAMI, 2019). The first
two authors contributed equally to this work. Project page:
http://visualdynamics.csail.mit.ed
Correctnes of belief propagation in Gaussian graphical models of arbitrary topology
Local "belief propagation" rules of the sort proposed byPearl [12] are guaranteed to converge to the correct posterior probabilities in singly connected graphical models. Recently, a number of researchers have empirically demonstrated good performance of "loopy belief propagation" -- using these same rules on graphs with loops. Perhaps the most dramatic instance is the near Shannonlimit performance of "Turbo codes", whose decoding algorithm is equivalentto loopy belief propagation. Except for th
A Comparative Evaluation of Approximate Probabilistic Simulation and Deep Neural Networks as Accounts of Human Physical Scene Understanding
Humans demonstrate remarkable abilities to predict physical events in complex
scenes. Two classes of models for physical scene understanding have recently
been proposed: "Intuitive Physics Engines", or IPEs, which posit that people
make predictions by running approximate probabilistic simulations in causal
mental models similar in nature to video-game physics engines, and memory-based
models, which make judgments based on analogies to stored experiences of
previously encountered scenes and physical outcomes. Versions of the latter
have recently been instantiated in convolutional neural network (CNN)
architectures. Here we report four experiments that, to our knowledge, are the
first rigorous comparisons of simulation-based and CNN-based models, where both
approaches are concretely instantiated in algorithms that can run on raw image
inputs and produce as outputs physical judgments such as whether a stack of
blocks will fall. Both approaches can achieve super-human accuracy levels and
can quantitatively predict human judgments to a similar degree, but only the
simulation-based models generalize to novel situations in ways that people do,
and are qualitatively consistent with systematic perceptual illusions and
judgment asymmetries that people show.Comment: Accepted to CogSci 2016 as an oral presentatio
4D Frequency Analysis of Computational Cameras for Depth of Field Extension
Depth of field (DOF), the range of scene depths that appear sharp in a photograph, poses a fundamental tradeoff in photography---wide apertures are important to reduce imaging noise, but they also increase defocus blur. Recent advances in computational imaging modify the acquisition process to extend the DOF through deconvolution. Because deconvolution quality is a tight function of the frequency power spectrum of the defocus kernel, designs with high spectra are desirable. In this paper we study how to design effective extended-DOF systems, and show an upper bound on the maximal power spectrum that can be achieved. We analyze defocus kernels in the 4D light field space and show that in the frequency domain, only a low-dimensional 3D manifold contributes to focus. Thus, to maximize the defocus spectrum, imaging systems should concentrate their limited energy on this manifold. We review several computational imaging systems and show either that they spend energy outside the focal manifold or do not achieve a high spectrum over the DOF. Guided by this analysis we introduce the lattice-focal lens, which concentrates energy at the low-dimensional focal manifold and achieves a higher power spectrum than previous designs. We have built a prototype lattice-focal lens and present extended depth of field results
Ambient Sound Provides Supervision for Visual Learning
The sound of crashing waves, the roar of fast-moving cars -- sound conveys
important information about the objects in our surroundings. In this work, we
show that ambient sounds can be used as a supervisory signal for learning
visual models. To demonstrate this, we train a convolutional neural network to
predict a statistical summary of the sound associated with a video frame. We
show that, through this process, the network learns a representation that
conveys information about objects and scenes. We evaluate this representation
on several recognition tasks, finding that its performance is comparable to
that of other state-of-the-art unsupervised learning methods. Finally, we show
through visualizations that the network learns units that are selective to
objects that are often associated with characteristic sounds.Comment: ECCV 201
Synthesizing Normalized Faces from Facial Identity Features
We present a method for synthesizing a frontal, neutral-expression image of a
person's face given an input face photograph. This is achieved by learning to
generate facial landmarks and textures from features extracted from a
facial-recognition network. Unlike previous approaches, our encoding feature
vector is largely invariant to lighting, pose, and facial expression.
Exploiting this invariance, we train our decoder network using only frontal,
neutral-expression photographs. Since these photographs are well aligned, we
can decompose them into a sparse set of landmark points and aligned texture
maps. The decoder then predicts landmarks and textures independently and
combines them using a differentiable image warping operation. The resulting
images can be used for a number of applications, such as analyzing facial
attributes, exposure and white balance adjustment, or creating a 3-D avatar
Unsupervised Training for 3D Morphable Model Regression
We present a method for training a regression network from image pixels to 3D
morphable model coordinates using only unlabeled photographs. The training loss
is based on features from a facial recognition network, computed on-the-fly by
rendering the predicted faces with a differentiable renderer. To make training
from features feasible and avoid network fooling effects, we introduce three
objectives: a batch distribution loss that encourages the output distribution
to match the distribution of the morphable model, a loopback loss that ensures
the network can correctly reinterpret its own output, and a multi-view identity
loss that compares the features of the predicted 3D face and the input
photograph from multiple viewing angles. We train a regression network using
these objectives, a set of unlabeled photographs, and the morphable model
itself, and demonstrate state-of-the-art results.Comment: CVPR 2018 version with supplemental material
(http://openaccess.thecvf.com/content_cvpr_2018/html/Genova_Unsupervised_Training_for_CVPR_2018_paper.html
Visual Dynamics: Probabilistic Future Frame Synthesis via Cross Convolutional Networks
We study the problem of synthesizing a number of likely future frames from a
single input image. In contrast to traditional methods, which have tackled this
problem in a deterministic or non-parametric way, we propose a novel approach
that models future frames in a probabilistic manner. Our probabilistic model
makes it possible for us to sample and synthesize many possible future frames
from a single input image. Future frame synthesis is challenging, as it
involves low- and high-level image and motion understanding. We propose a novel
network structure, namely a Cross Convolutional Network to aid in synthesizing
future frames; this network structure encodes image and motion information as
feature maps and convolutional kernels, respectively. In experiments, our model
performs well on synthetic data, such as 2D shapes and animated game sprites,
as well as on real-wold videos. We also show that our model can be applied to
tasks such as visual analogy-making, and present an analysis of the learned
network representations.Comment: The first two authors contributed equally to this wor
Physical Primitive Decomposition
Objects are made of parts, each with distinct geometry, physics,
functionality, and affordances. Developing such a distributed, physical,
interpretable representation of objects will facilitate intelligent agents to
better explore and interact with the world. In this paper, we study physical
primitive decomposition---understanding an object through its components, each
with physical and geometric attributes. As annotated data for object parts and
physics are rare, we propose a novel formulation that learns physical
primitives by explaining both an object's appearance and its behaviors in
physical events. Our model performs well on block towers and tools in both
synthetic and real scenarios; we also demonstrate that visual and physical
observations often provide complementary signals. We further present ablation
and behavioral studies to better understand our model and contrast it with
human performance.Comment: ECCV 2018. Project page: http://ppd.csail.mit.edu
- …
