164 research outputs found
Diagnostic challenge: bilateral infected lumbar facet cysts - a rare cause of acute lumbar spinal stenosis and back pain
Symptomatic synovial lumbar facet cysts are a relatively rare cause of radiculopathy and spinal stenosis. This case and brief review of the literature, details a patient who presented with acutely symptomatic bilateral spontaneously infected synovial facet (L4/5) cysts. This report highlights diagnostic clues for identifying infection of a facet cyst
Using Deployed Medical Providers to Support in Garrison Tele ENT Care- A Model to Capture Excess Medical Capacity Using Telemedicine
Within the military context telemedicine technology is commonly used to link specialty providers in rear area medical centres to support far forward, deployed medical needs. This paper describes a reverse of that concept, whereby deployed specialty providers in Afghanistan were linked by telemedicine technology to Landstuhl Regional Medical Center in Landstuhl Germany to provide tele-ENT consultations. This approach can be used to utilise excess medical specialty capacity from deployed specialty providers using telemedicine. Maintenance of competence is a problem for deployed military medical personnel who may be providing combat care instead of practicing their medical specialty. Using teleconsultation to allow them to practice their specialty may be a way to decrease this skill loss
Establishing a Low-Cost Telecommunications Method to Provide Tele ENT Consultations From a Military Medical Center to Deployed Locations
In many deployed locations, access to expert medical advice can be limited. The expansion of telemedicine has bridged this gap; however, the large and costly technology required to perform telemedical activities hinders its accessibility. This study aimed to develop a low-cost telemedicine method in order to perform tele ENT consultations for deployed military personnel. The results indicated an ability to transmit clear endoscopic images between deployed and garrison locations using low weight/volume/cost laptop based telemedicine technology
Polysaccharides Isolated from Açaí Fruit Induce Innate Immune Responses
The Açaí (Acai) fruit is a popular nutritional supplement that purportedly enhances immune system function. These anecdotal claims are supported by limited studies describing immune responses to the Acai polyphenol fraction. Previously, we characterized γδ T cell responses to both polyphenol and polysaccharide fractions from several plant-derived nutritional supplements. Similar polyphenol and polysaccharide fractions are found in Acai fruit. Thus, we hypothesized that one or both of these fractions could activate γδ T cells. Contrary to previous reports, we did not identify agonist activity in the polyphenol fraction; however, the Acai polysaccharide fraction induced robust γδ T cell stimulatory activity in human, mouse, and bovine PBMC cultures. To characterize the immune response to Acai polysaccharides, we fractionated the crude polysaccharide preparation and tested these fractions for activity in human PBMC cultures. The largest Acai polysaccharides were the most active in vitro as indicated by activation of myeloid and γδ T cells. When delivered in vivo, Acai polysaccharide induced myeloid cell recruitment and IL-12 production. These results define innate immune responses induced by the polysaccharide component of Acai and have implications for the treatment of asthma and infectious disease
Combat-Related Intradural Gunshot Wound to the Thoracic Spine: Significant Improvement and Neurologic Recovery Following Bullet Removal
The vast majority of combat-related penetrating spinal injuries from gunshot wounds result in severe or complete neurological deficit. Treatment is based on neurological status, the presence of cerebrospinal fluid (CSF) fistulas, and local effects of any retained fragment(s). We present a case of a 46-year-old male who sustained a spinal gunshot injury from a 7.62-mm AK-47 round that became lodged within the subarachnoid space at T9-T10. He immediately suffered complete motor and sensory loss. By 24-48 hours post-injury, he had recovered lower extremity motor function fully but continued to have severe sensory loss (posterior cord syndrome). On post-injury day 2, he was evacuated from the combat theater and underwent a T9 laminectomy, extraction of the bullet, and dural laceration repair. At surgery, the traumatic durotomy was widened and the bullet, which was laying on the dorsal surface of the spinal cord, was removed. The dura was closed in a water-tight fashion and fibrin glue was applied. Postoperatively, the patient made a significant but incomplete neurological recovery. His stocking-pattern numbness and sub-umbilical searing dysthesia improved. The spinal canal was clear of the foreign body and he had no persistent CSF leak. Postoperative magnetic resonance imaging of the spine revealed contusion of the spinal cord at the T9 level. Early removal of an intra-canicular bullet in the setting of an incomplete spinal cord injury can lead to significant neurological recovery following even high-velocity and/or high-caliber gunshot wounds. However, this case does not speak to, and prior experience does not demonstrate, significant neurological benefit in the setting of a complete injury
Does Recombinant Human Bone Morphogenic Protein 2 Affect Perioperative Blood Loss after Lumbar and Thoracic Spinal Fusion?
Study Design Retrospective cohort design. Purpose This study aimed to determine whether recombinant human bone morphogenic protein 2 (rhBMP-2) reduces total perioperative blood loss during lumbar and thoracic fusion. Overview of Literature Previous studies on rhBMP-2 versus iliac crest bone grafting in thoracic and lumbar fusions have yielded mixed results regarding reductions in blood loss and have largely neglected the postoperative period when analyzing total blood loss. Additionally, these studies have been limited by heterogeneity and sample size. Methods We analyzed the blood loss patterns of 617 consecutive adult patients undergoing lumbar and/or thoracic fusions requiring subfascial drain placement at a single institution from January 2009 to December 2016. Patients were divided into BMP and non-BMP cohorts, and a propensity score analysis was conducted to account for the differences between cohorts. Results At a per-level fused basis, the BMP group exhibited a significant reduction in the intraoperative (66.1 mL per-level fused basis; 95% confidence interval [CI], 127.9 to 4.25 mL; p=0.036) and total perioperative blood loss (100.7 mL per-level fused basis; 95% CI, 200.9 to 0.5 mL; p=0.049). However, no significant differences were observed in an analysis when not controlling for the number of levels or when examining the postoperative drain output. Conclusion RhBMP-2 appears to reduce both intraoperative and total blood loss during lumbar and thoracic fusions on a per-level fused basis. This total reduction in blood loss was achieved via intraoperative effects because RhBMP-2 had no significant effect on the postoperative drain output
An Ovariectomy-Induced Rabbit Osteoporotic Model: A New Perspective
Study DesignExperimental Animal Model.PurposeThe aim of our study was to validate a pure bilateral ovariectomy (OVX) female New Zealand white rabbit model of postmenopausal osteoporosis utilizing animal-sparing in vivo techniques for evaluating bone mineral density (BMD). We also sought to demonstrate that bilateral OVX in female New Zealand white rabbits can produce diminished BMD in the spinal column and simulate osteoporosis, without the need for adjuvant chemotherapeutic agents (i.e., no additional glucocorticosteroids or other drugs were used for stimulating accelerated BMD loss), which can be assessed by in vivo BMD testing.Overview of LiteratureMultiple animal models of postmenopausal osteoporosis have been described. Rat ovariectomy models have been successful, but are limited by rats' inability to achieve true skeletal maturity and a slight morphology that limits surgical instrumentation. Rabbit models have been described which do not have these limitations, but previous models have relied on adjunctive steroid therapy to achieve osteoporosis and have required animal sacrifice for bone mineral density assessment.MethodsThirty-six skeletally mature female rabbits underwent bilateral OVX. BMD was measured using dual-energy X-ray absorptiometry on the metaphysis of the proximal tibia and distal femur, at baseline and 17 weeks postoperatively.ResultsMean BMD values were significantly reduced by 21.9% (p<0.05) in the proximal tibia and 11.9% (p<0.001) in the distal femur at 17 weeks.ConclusionsThis study is the first to demonstrate a significant bone loss within four months of pure OVX in rabbits using animal-sparing validation techniques. We believe that this OVX model is safe, reproducible, and can be employed to longitudinally evaluate the effect of anti-osteoporosis therapeutics and surgical interventions
The Covariant Entropy Bound, Brane Cosmology, and the Null Energy Condition
In discussions of Bousso's Covariant Entropy Bound, the Null Energy Condition
is always assumed, as a sufficient {\em but not necessary} condition which
helps to ensure that the entropy on any lightsheet shall necessarily be finite.
The spectacular failure of the Strong Energy Condition in cosmology has,
however, led many astrophysicists and cosmologists to consider models of dark
energy which violate {\em all} of the energy conditions, and indeed the current
data do not completely rule out such models. The NEC also has a questionable
status in brane cosmology: it is probably necessary to violate the NEC in the
bulk in order to obtain a "self-tuning" theory of the cosmological constant. In
order to investigate these proposals, we modify the Karch-Randall model by
introducing NEC-violating matter into in such a way that the brane
cosmological constant relaxes to zero. The entropy on lightsheets remains
finite. However, we still find that the spacetime is fundamentally incompatible
with the Covariant Entropy Bound machinery, in the sense that it fails the
Bousso-Randall consistency condition. We argue that holography probably forbids
all {\em cosmological} violations of the NEC, and that holography is in fact
the fundamental physical principle underlying the cosmological version of the
NEC.Comment: 21 pages, 3 figures, version 2:corrected and greatly improved
discussion of the Bousso-Randall consistency check, references added;
version3: more references added, JHEP versio
Perspectives on Astrophysics Based on Atomic, Molecular, and Optical (AMO) Techniques
About two generations ago, a large part of AMO science was dominated by
experimental high energy collision studies and perturbative theoretical
methods. Since then, AMO science has undergone a transition and is now
dominated by quantum, ultracold, and ultrafast studies. But in the process, the
field has passed over the complexity that lies between these two extremes. Most
of the Universe resides in this intermediate region. We put forward that the
next frontier for AMO science is to explore the AMO complexity that describes
most of the Cosmos.Comment: White paper submission to the Decadal Assessment and Outlook Report
on Atomic, Molecular, and Optical (AMO) Science (AMO 2020
- …